【題目】如圖,已知二次函數(shù)的圖像與軸交于、兩點(點在點的左側),與軸交于點,且.
(1)求線段的長度:
(2)若點在拋物線上,點位于第二象限,過作,垂足為.已知,求點的坐標.
【答案】(1)AC=4
(2)P(-1,4)或(-2,3).
【解析】
(1)求出B點坐標,再利用OA=OB求出A點坐標,代入二次函數(shù)求出解析式,再令y=0即可求出與x軸的交點坐標,進而即可解題;(2)作PF∥x軸于F,利用∠BAO=45°,證明三角形PQF是等腰直角三角形,求出PF=2,再設出P,F的坐標,代入直線解析式求解方程即可解題.
解:(1)由可知二次函數(shù)與y軸的交點為B(0,3)
∵OA=OB,
∴A(-3,0),
將A點代入二次函數(shù)解析式得:b=-2,即二次函數(shù)解析式為,
令y=0,即解得:x1=-3,x2=1,
∴C(1,0)
∴AC=4,
(2)過點P作PF∥x軸于F,
由A,B坐標可得直線AB的解析式為y=x+3,
∴∠BAO=45°,
又∵, PF∥x軸
∴三角形PQF是等腰直角三角形,
設P(a,b),
∵P在拋物線上,
∴b=-a2-2a+3,
∵
∴PF=2(勾股定理),
∴F(a+2, -a2-2a+3)
將F代入y=x+3,即-a2-2a+3=a+5,
解得a1=-1,a2=-2,
∴P(-1,4)或(-2,3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形, ,AC為直徑, DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)若AC=9,CE=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2;
(1)求反比例函數(shù)的表達式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,點B關于AD的對稱點為B′,連接AB′,CB′,CB′交AD于F點.
(1)如圖1,∠ABC=90°,求證:F為CB′的中點;
(2)小宇通過觀察、實驗、提出猜想:如圖2,在點B繞點A旋轉的過程中,點F始終為CB′的中點.小宇把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過點B′作B′G∥CD交AD于G點,只需證三角形全等;
想法2:連接BB′交AD于H點,只需證H為BB′的中點;
想法3:連接BB′,BF,只需證∠B′BC=90°.
…
請你參考上面的想法,證明F為CB′的中點.(一種方法即可)
(3)如圖3,當∠ABC=135°時,AB′,CD的延長線相交于點E,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給網(wǎng)格圖(每小格均為邊長是1的正方形)中完成下列各題:
(1)圖形ABCD與圖形A1B1C1D1關于直線MN成軸對稱,請在圖中畫出對稱軸并標注上相應字母M、N;
(2)以圖中O點為位似中心,將圖形ABCD放大,得到放大后的圖形A2B2C2D2,則圖形ABCD與圖形A2B2C2D2的對應邊的比是多少(注:只要寫出對應邊的比即可);
(3)求圖形A2B2C2D2的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課桌生產廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調節(jié)角度的桌面.新桌面的設計圖如圖1,AB可繞點A旋轉,在點C處安裝一根可旋轉的支撐臂CD,AC=30 cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長;
(2)如圖3,當∠BAC=12°時,求AD的長.(結果保留根號)
(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,弦AB=弦CD,AB⊥CD于點E,且AE<EB,CE<ED,連結AO,DO,BD.
(1)求證:EB=ED.
(2)若AO=6,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門對部分初三學生進行了抽樣調查,就初三學生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進入社會就業(yè);D,其它)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a)、(b).請問:
(1)此次共調查了多少名初中畢業(yè)生?
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請估計2019年初三畢業(yè)生中讀普通高中的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組借助無人飛機航拍,如圖,無人飛機從A處飛行至B處需12秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為3米/秒,則這架無人飛機的飛行高度為(結果保留根號)__________米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com