在一次數(shù)學(xué)活動課上,老師帶領(lǐng)同學(xué)們?nèi)y量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進(jìn)50米到達(dá)B處,此時測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin21°≈,tan21°≈

【答案】分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及到兩個直角三角形△CEF、△CGE,利用其公共邊CE構(gòu)造等量關(guān)系,借助FG=EF-GE=50,構(gòu)造方程關(guān)系式求解.
解答:解:由題意知CD⊥AD,EF∥AD.
∴∠CEF=90°.
設(shè)CE=x,
在Rt△CEF中,
tan∠CFE=
則EF=x.
在Rt△CEG中,
tan∠CGE=,
則GE=
∵EF=FG+EG,
x,
x=37.5.
∴CD=CE+ED=37.5+1.5=39(米).
答:古塔的高度約是39米.
點評:本題要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生去測一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點A處觀測到河對岸水邊有一點C,測得C在A北偏西31°的方向上,沿河岸向北前行20米到達(dá)B處,測得C在B北偏西45°的方向上,請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計算出這條河的寬度.(參考數(shù)值:tan31°≈
3
5
,sin31°≈
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)活動課上,老師帶領(lǐng)同學(xué)們?nèi)y量一座古塔CD的高度.他們首先從A處安置測傾器,測得塔頂C的仰角∠CFE=21°,然后往塔的方向前進(jìn)50米到達(dá)B處,此精英家教網(wǎng)時測得仰角∠CGE=37°,已知測傾器高1.5米,請你根據(jù)以上數(shù)據(jù)計算出古塔CD的高度.
(參考數(shù)據(jù):sin37°≈
3
5
,tan37°≈
3
4
,sin21°≈
9
25
,tan21°≈
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動課上,張明同學(xué)將矩形ABCD沿直線CE折疊,頂點B恰好落在AD邊上F點處,如圖所示,已知CD=8cm,BE=5cm,則AD=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生去測長江的寬度,某學(xué)生在長江北岸點A處觀測到長江對岸水邊有一點C,測得C在A東南方向上,沿長江邊向東前行200米到達(dá)B處,測得C在B南偏東30°的方向上.
(1)畫出學(xué)生測量的示意圖;
(2)請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計算出長江的寬度(精確到0.1 m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)活動課上,王老師給學(xué)生發(fā)了一塊長40cm,寬30cm的長方形紙片(如圖),要求折成一個高為5cm的無蓋的且容積最大的長方體盒子.
(1)該如何裁剪呢?請畫出示意圖,并標(biāo)出尺寸;
(2)求該盒子的容積.

查看答案和解析>>

同步練習(xí)冊答案