【題目】如圖,三沙市一艘海監(jiān)船某天在黃巖島P附近海域由南向北巡航,某一時刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時的速度繼續(xù)航行,2小時后到達(dá)B處,測得該島在北偏東75°方向,求此時海監(jiān)船與黃巖島P的距離BP的長.(參考數(shù)據(jù):≈1.414,結(jié)果精確到0.1)

【答案】解:過點B作BD⊥AP于D,

由已知條件得:AB=20×2=40,∠P=75°﹣30°=45°,
在Rt△ABD中,∵AB=40,∠A=30,
∴BD=AB=20,
在Rt△BDP中,∵∠P=45°,
∴PB=BD=≈28.3(海里).
答:此時海監(jiān)船與黃巖島P的距離BP的長約為28.3海里.
【解析】過點B作BD⊥AP于D,由已知條件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中求出BD=AB=20,在Rt△BDP中求出PB即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一條拋物線與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,且當(dāng)x=﹣1和x=3時,y的值相等,直線與拋物線有兩個交點,其中一個交點的橫坐標(biāo)是6,另一個交點是這條拋物線的頂點M.

(1)求這條拋物線的表達(dá)式.
(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運動,當(dāng)一個點到達(dá)終點時,另一個點立即停止運動,設(shè)運動時間為t秒.
①若使△BPQ為直角三角形,請求出所有符合條件的t值;
②求t為何值時,四邊形ACQP的面積有最小值,最小值是多少?
(3)如圖2,當(dāng)動點P運動到OB的中點時,過點P作PD⊥x軸,交拋物線于點D,連接OD,OM,MD得△ODM,將△OPD沿x軸向左平移m個單位長度(0<m<2),將平移后的三角形與△ODM重疊部分的面積記為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC,OA=3,OC=6,將△ABC沿對角線AC翻折,使點B落在點B′處,AB′與y軸交于點D,則點D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)的圖象上,從左向右第3個正方形中的一個頂點A的坐標(biāo)為(6,2),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則第4個正方形的邊長是 , S3的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,⊙O的半徑為3,∠A=45°,則的長是( 。

A.π
B.π
C.π
D.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明開了一家網(wǎng)店,進(jìn)行社會實踐,計劃經(jīng)銷甲、乙兩種商品.若甲商品每件利潤10元,乙商品每件利潤20元,則每周能賣出甲商品40件,乙商品20件.經(jīng)調(diào)查,甲、乙兩種商品零售單價分別每降價1元,這兩種商品每周可各多銷售10件.為了提高銷售量,小明決定把甲、乙兩種商品的零售單價都降價x元.
(1)直接寫出甲、乙兩種商品每周的銷售量y(件)與降價x(元)之間的函數(shù)關(guān)系式:y= , y=;
(2)求出小明每周銷售甲、乙兩種商品獲得的總利潤W(元)與降價x(元)之間的函數(shù)關(guān)系式?如果每周甲商品的銷售量不低于乙商品的銷售量的,那么當(dāng)x定為多少元時,才能使小明每周銷售甲、乙兩種商品獲得的總利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中小學(xué)生的喜愛,小剛想知道大家最喜歡哪位“兄弟”,于是在本校隨機(jī)抽取了一部分學(xué)生進(jìn)行抽查(每人只能選一個自己最喜歡的“兄弟”),將調(diào)查結(jié)果進(jìn)行了整理后繪制成如圖兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息解答下列問題:

(1)本次被調(diào)查的學(xué)生有 人.
(2)將兩幅統(tǒng)計圖補充完整.
(3)若小剛所在學(xué)校有2000名學(xué)生,請根據(jù)圖中信息,估計全校喜歡“Angelababy”的人數(shù).
(4)若從3名喜歡“李晨”的學(xué)生和2名喜歡“Angelababy”的學(xué)生中隨機(jī)抽取兩人參加文體活動,則兩人都是喜歡“李晨”的學(xué)生的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:(x﹣a)2+(y﹣b)2=9,M在拋物線C:x2=2py(p>0)上,圓M過原點且與C的準(zhǔn)線相切. (Ⅰ)求C的方程;
(Ⅱ)點Q(0,﹣t)(t>0),點P(與Q不重合)在直線l:y=﹣t上運動,過點P作C的兩條切線,切點分別為A,B.求證:∠AQO=∠BQO(其中O為坐標(biāo)原點).

查看答案和解析>>

同步練習(xí)冊答案