【題目】問題背景:如圖(1),在△ABC中,已知AB=AC,BE=CF.
(1)發(fā)現(xiàn)問題:小華審題后發(fā)現(xiàn),若連接CE,BF,則CE=BF,請說明理由;
(2)提出問題:如圖(2),設(shè)CE與BF交于點(diǎn)O,則直線AO是BC邊的垂直平分線嗎?試說明理由;
(3)解決問題:在圖(3)中,是各邊相等,各內(nèi)角也相等的正五邊形ABCDE,請你只用無刻度的直尺畫出圖中BC邊的垂直平分線.
【答案】
(1)解:如圖1中,連接EC、BF.
∵AB=AC,
∴∠ABC=∠ACB,
在△EBC和△FCB中,
,
∴△EBC≌△FCB,
∴CE=BF;
(2)解:結(jié)論:AO是BC邊的中垂線,
理由:∵△EBC≌△FCB,
∴∠OEB=∠OFC,
在△EOB和△FOC中,
,
∴△EOB≌△FOC,
∴OB=OC,又AB=AC,
∴AO是BC邊的中垂線
(3)解:如圖(3):連接AC、BD交于點(diǎn)O,作直線EO,直線EO即為線段BC的垂直平分線.
【解析】(1)首先依據(jù)等腰三角形的性質(zhì)得到∠ABC=∠ACB,然后再依據(jù)SAS證明△EBC≌△FCB即可;
(2)證明△EOB≌△FOC,得到OB=OC,根據(jù)線段垂直平分線的判定定理得到答案;
(3)根據(jù)點(diǎn)到線段的兩個端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上作圖即可.
【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的性質(zhì),需要了解等腰三角形的兩個底角相等(簡稱:等邊對等角)才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線上,點(diǎn)B1,B2,…,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若,則a2015= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某綠色食品有限公司準(zhǔn)備購進(jìn)A和B兩種蔬菜,B種蔬菜每噸的進(jìn)價(jià)比A中蔬菜每噸的進(jìn)價(jià)多0.5萬元,經(jīng)計(jì)算用4.5萬元購進(jìn)的A種蔬菜的噸數(shù)與用6萬元購進(jìn)的B種蔬菜的噸數(shù)相同,請解答下列問題:
(1)求A,B兩種蔬菜每噸的進(jìn)價(jià);
(2)該公司計(jì)劃用14萬元同時購進(jìn)A,B兩種蔬菜,若A種蔬菜以每噸2萬元的價(jià)格出售,B種蔬菜以每噸3萬元的價(jià)格出售,且全部售出,請求出所獲利潤W(萬元)與購買A種蔬菜的資金a(萬元)之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,要求A種蔬菜的噸數(shù)不低于B種蔬菜的噸數(shù),若公司欲將(2)中的最大利潤全部用于購買甲、乙兩種型號的電腦贈給某中學(xué),甲種電腦每臺2100元,乙種電腦每臺2700元,請直接寫出有幾種購買電腦的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸、y軸相交于B、C兩點(diǎn),動點(diǎn)D在線段OB上,將線段DC繞著點(diǎn)D順時針旋轉(zhuǎn)90°得到DE,過點(diǎn)E作直線l⊥x軸于H,過點(diǎn)C作CF⊥y軸,交直線l于F,設(shè)點(diǎn)D的橫坐標(biāo)為m.
(1)請直接寫出點(diǎn)B、C的坐標(biāo);
(2)當(dāng)點(diǎn)E落在直線BC上時,求tan∠FDE的值;
(3)對于常數(shù)m,探究:在直線l上是否存在點(diǎn)G,使得∠CDO=∠DFE+∠DGH?若存在,請求出點(diǎn)G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊形狀為四邊形的鋼板,量得它的各邊長度為AB=9cm,BC=12cm,CD=17cm,DA=8cm,∠B=90°.求這塊鋼板的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.
(1)求證:AE=CF;
(2)若∠ABE=65°,求∠EGC的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com