【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.
【答案】
(1)解:如圖,過點(diǎn)C作CP⊥AB于點(diǎn)P,
則四邊形CDGP是矩形,
∴CP=DG=2,CD=GP=6,
∵∠B=30°,
∴BP= = =2 ,
∴AG=AB﹣GP﹣BP=8+2 ﹣6﹣2 =2=DG,
∴背水坡AD的坡度DG:AG=1:1
(2)解:由題意知EF=MN=4,ME=CD=6,∠B=30°,
則BF= = =4 ,HN= = =4,NF=ME=6,
∴HB=HN+NF+BF=4+6+4 =10+4 ,
答:加高后壩底HB的寬度為(10+4 )米
【解析】(1)作CP⊥AB于點(diǎn)P,即可知四邊形CDGP是矩形,從而得CP=DG=2、CD=GP=6,由BP= =2 根據(jù)AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根據(jù)題意得EF=MN=4、ME=CD=6、∠B=30°,由BF= 、HN= 、NF=ME,根據(jù)HB=HN+NF+BF可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)過點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長CF交AB于點(diǎn)C,若ACAB=12,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,⊙D經(jīng)過點(diǎn)B,與BC交于點(diǎn)E,與AB交與點(diǎn)F.已知tanA= ,cot∠ABC= ,AD=8.
(1)求⊙D的半徑;
(2)求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對應(yīng)點(diǎn).
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1、l2、l3分別過正方形ABCD的三個頂點(diǎn)A,B,D,且相互平行,若l1與l2的距離為1,l2與l3的距離為1,則該正方形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC=5,BC=8,∠PDQ的頂點(diǎn)D在BC邊上,DP交AB邊于點(diǎn)E,DQ交AB邊于點(diǎn)O且交CA的延長線于點(diǎn)F(點(diǎn)F與點(diǎn)A不重合),設(shè)∠PDQ=∠B,BD=3.
(1)求證:△BDE∽△CFD;
(2)設(shè)BE=x,OA=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)當(dāng)△AOF是等腰三角形時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:
(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C=°,∠D=°
(2)在探究等對角四邊形性質(zhì)時: 小紅畫了一個如圖2所示的等對角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立,請你證明該結(jié)論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以AB和BC為邊各畫一個等對角四邊形ABCD. 要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫的兩個四邊形不全等.
(4)已知:在等對角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水利部確定每年的3月22日至28日為“中國水周”(1994年以前為7月1日至7日),從1991年起,我國還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進(jìn)一步提高居民珍惜水、保護(hù)水和水憂患意識,提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機(jī)抽取100戶,調(diào)查他們家庭每月的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖表:
用戶月用水量頻數(shù)分布表 | ||
平均用水量(噸) | 頻數(shù) | 頻率 |
3~6噸 | 10 | 0.1 |
6~9噸 | m | 0.2 |
9~12噸 | 36 | 0.36 |
12~15噸 | 25 | n |
15~18噸 | 9 | 0.09 |
請根據(jù)上面的統(tǒng)計圖表,解答下列問題:
(1)在頻數(shù)分布表中:m=__ __,n=__ __;
(2)根據(jù)題中數(shù)據(jù)補(bǔ)全頻數(shù)直方圖;
(3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實(shí)行加價收費(fèi),那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎車從家出發(fā),先向東騎行1km到達(dá)A村,繼續(xù)向東騎行4km到達(dá)B村,然后向西騎行8km到達(dá)C村,最后回到家.
(1) 以快遞公司為原點(diǎn),以向東方向?yàn)檎较,?/span>1 cm表示1 km,畫出數(shù)軸,并在數(shù)軸上表示出A、B、C三個店的位置;
(2) C店離A店有多遠(yuǎn)?
(3) 快遞員一共騎行了多少千米?
查看答案和解析>>