【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點的反比例函數(shù)的解析式為

【答案】y=﹣
【解析】解:設經(jīng)過C點的反比例函數(shù)的解析式是y= (k≠0),設C(x,y). ∵四邊形OABC是平行四邊形,
∴BC∥OA,BC=OA;
∵A(4,0),B(3,3),
∴點C的縱坐標是y=3,|3﹣x|=4(x<0),
∴x=﹣1,
∴C(﹣1,3).
∵點C在反比例函數(shù)y= (k≠0)的圖象上,
∴3= ,
解得,k=﹣3,
∴經(jīng)過C點的反比例函數(shù)的解析式是y=﹣
故答案為:y=﹣
設經(jīng)過C點的反比例函數(shù)的解析式是y= (k≠0),設C(x,y).根據(jù)平行四邊形的性質求出點C的坐標(﹣1,3).然后利用待定系數(shù)法求反比例函數(shù)的解析式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】當a≠0時,函數(shù)y=ax+1與函數(shù)y= 在同一坐標系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,點P是AD邊上一點,聯(lián)結PB、PC,且AB2=APPD,則圖中有對相似三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在等腰Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結CD,當 = 時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點處作業(yè),測得俯角為30°正前方的海底C點處有黑匣子信號發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點處測得俯角為45°正前方的海底C點處有黑匣子信號發(fā)出,請通過計算判斷“蛟龍”號能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù) ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點處作業(yè),測得俯角為30°正前方的海底C點處有黑匣子信號發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點處測得俯角為45°正前方的海底C點處有黑匣子信號發(fā)出,請通過計算判斷“蛟龍”號能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù) ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是線段AB上一點,AB=4cm,AO=1cm,若線段AB繞點O順時針旋轉120°到線段A′B′的位置,則線段AB在旋轉過程中掃過的圖形的面積為 cm2 . (結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加強公路的節(jié)水意識,合理利用水資源,某市對居民用水實行階梯水價,居民家庭每月用水量劃分為兩個階梯,一、二階梯用水的單價之比等于1:2,如圖折線表示實行階梯水價后每月水費y(元)與用水量x(m3)之間的函數(shù)關系,其中射線AB表示第二級階梯時y與x之間的函數(shù)關系.
(1)寫出點B的實際意義;
(2)求射線AB所在直線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“富春包子”是揚州特色早點,富春茶社為了了解顧客對各種早點的喜愛情況,設計了如右圖的調查問卷,對顧客進行了抽樣調查.根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解決下列問題:
(1)條形統(tǒng)計圖中“湯包”的人數(shù)是 , 扇形統(tǒng)計圖中“蟹黃包”部分的圓心角為°;
(2)根據(jù)抽樣調查結果,請你估計富春茶社1000名顧客中喜歡“湯包”的有多少人?

查看答案和解析>>

同步練習冊答案