【題目】如圖,折線ABCDE描述了一輛汽車在某一直線上行駛過(guò)程中,汽車離出發(fā)地的距離y(km)和行駛時(shí)間x(h)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說(shuō)法:①汽車共行駛了120km;②汽車在行駛途中停留了0.5h;③汽車在整個(gè)行駛過(guò)程中的平均速度為km/h;④汽車自出發(fā)后3h~4.5h之間行駛的速度在逐漸減小.其中正確的說(shuō)法是 .(填上所有正確的序號(hào))
【答案】②
【解析】由圖象可知,汽車走到距離出發(fā)點(diǎn)120千米的地方后又返回出發(fā)點(diǎn),所以汽車共行駛了240千米,①錯(cuò);
從1.5時(shí)開(kāi)始到2時(shí)結(jié)束,時(shí)間在增多,而路程沒(méi)有變化,說(shuō)明此時(shí)在停留,停留了2-1.5=0.5小時(shí),②對(duì);
汽車用4.5小時(shí)走了240千米,平均速度為:240÷4.5=160/3 千米/時(shí),③錯(cuò).
汽車自出發(fā)后3小時(shí)至4.5小時(shí),圖象是直線形式,說(shuō)明是在勻速前進(jìn),④錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD是角平分線,DE⊥AD交AB于E,△ADE的外接圓⊙O與邊AC相交于點(diǎn)F,過(guò)F作AB的垂線交AD于P,交AB于M,交⊙O于G,連接GE.
(1)求證:BC是⊙O的切線;
(2)若tan∠G= ,BE=4,求⊙O的半徑;
(3)在(2)的條件下,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了進(jìn)一步普及足球知識(shí),傳播足球文化,某市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
獲獎(jiǎng)等次 | 頻數(shù) | 頻率 |
一等獎(jiǎng) | 10 | 0.05 |
二等獎(jiǎng) | 20 | 0.10 |
三等獎(jiǎng) | 30 | b |
優(yōu)勝獎(jiǎng) | a | 0.30 |
鼓勵(lì)獎(jiǎng) | 80 | 0.40 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= , b=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在這次競(jìng)賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表該市參加上一級(jí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在折紙活動(dòng)中,小明制作了一張△ABC紙片,點(diǎn)D、E分別是邊AB、AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=75°,則∠1+∠2=( )
A.150°
B.210°
C.105°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)x(x-1)+2x(x+1)-(3x-1)(2x-5),其中x=2.
(2),其中=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正確的結(jié)論是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);
(2)在圖①中,若∠AOC=,直接寫出∠DOE的度數(shù)(用含的代數(shù)式表示);
(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說(shuō)明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com