【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
【答案】(1)1:1;(2)y=x2+x﹣.
【解析】
試題分析:(1)首先解一元二次方程,求出點A、點B的坐標(biāo),得到含有字母a的拋物線的交點式;然后分別用含字母a的代數(shù)式表示出△ABC與△ACD的面積,最后得出結(jié)論;
(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系數(shù)a,得出拋物線的解析式.
試題解析:(1)解方程x2+4x-5=0,得x=-5或x=1,
由于x1<x2,則有x1=-5,x2=1,
∴A(-5,0),B(1,0).
拋物線的解析式為:y=a(x+5)(x-1)(a>0),
∴對稱軸為直線x=-2,頂點D的坐標(biāo)為(-2,-9a),
令x=0,得y=-5a,
∴C點的坐標(biāo)為(0,-5a).
依題意畫出圖形,如右圖所示,則OA=5,OB=1,AB=6,OC=5a,
過點D作DE⊥y軸于點E,則DE=2,OE=9a,CE=OE-OC=4a.
S△ACD=S梯形ADEO-S△CDE-S△AOC
=(DE+OA)OE-DECE-OAOC=(2+5)9a-×2×4a-×5×5a=15a,
而S△ABC=ABOC=×6×5a=15a,
∴S△ABC:S△ACD=15a:15a=1:1;
(2)如解答圖,過點D作DE⊥y軸于E
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
設(shè)對稱軸x=-2與x軸交于點F,則AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.
∵∠ADC=90°,∴△ACD為直角三角形,
由勾股定理得:AD2+CD2=AC2,
即(9+81a2)+(4+16a2)=25+25a2,化簡得:a2=,
∵a>0,
∴a=,
∴拋物線的解析式為:y=(x+5)(x﹣1)=x2+x﹣.
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF中,AF∥CD,AB∥DE,∠A=140°,∠B=100°,∠E=90°,求:∠C、∠D、∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),設(shè)計開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)將條形圖補充完整;
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.
(1)請在圖中畫出平移后的△ABC,
(2)再在圖中畫出△ABC的高CD,
(3)在右圖中能使S△ABC=S△PBC的格點P的個數(shù)有 個(點P異于A)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l外有不重合的兩點A、B.在直線l上求一點C,使得的長度最短,作法為:①作點B關(guān)于直線l的對稱點B'.②連接AB'交直線l于點C,則點C即為所求.在解決這個問題時,沒有用到的知識點是( )
A. 線段的垂直平分線性質(zhì) B. 兩點之間線段最短
C. 三角形兩邊之和大于第三邊 D. 角平分線的性質(zhì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,-2,3,-4,小明先從布袋中隨機(jī)摸出一個球(不放回去),再從剩下的3個球中隨機(jī)摸出第二個乒乓球.
(1)共有 種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知D是△ABC的邊AB上一點,CE∥AB,DE交AC于點O,且OA=OC,猜想線段CD與線段AE的大小關(guān)系和位置關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com