【題目】如圖,六邊形ABCDEF中,AF∥CD,AB∥DE,∠A=140°,∠B=100°,∠E=90°,求:∠C、∠D、∠F的度數(shù).
【答案】∠C=120°,∠CDE=140°,∠F=130°.
【解析】試題分析:連接AD,由AF∥CD得出∠FAD=∠ADC,由AB∥DE得出∠BAD=∠ADE,故可得出∠CDE=∠BAF,∠FAD+∠ADE=∠ADC+∠BAD=∠BAF,再由四邊形內(nèi)角和定理即可得出∠F與∠C的度數(shù).
試題解析:
連接AD,
∵AF∥CD,
∴∠FAD=∠ADC.
∵AB∥DE,
∴∠BAD=∠ADE,
∴∠CDE=∠BAF=140°,
∴∠FAD+∠ADE=∠ADC+∠BAD=∠BAF=140°.
∵∠E=90°,
∴∠F=360°﹣140°﹣90°=130°.
∵∠B=100°,
∴∠C=360°﹣100°﹣140°=120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,下面的結(jié)論: ①∠APO+∠DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;④S△ABC=S四邊形AOCP,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)拋物線經(jīng)過點(diǎn)A (4,0),點(diǎn)B (1,-3) ,求該拋物線的解析式;
(2)如圖,要修建一個(gè)圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?
(3)如圖,點(diǎn)P(>0),在軸正半軸上,過點(diǎn)P作平行于軸的直線,分別交拋物線于點(diǎn)A,B,交拋物線于點(diǎn)C,D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點(diǎn),F是BC延長線上一點(diǎn),∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=-x-2交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y2=ax2+bx+c的頂點(diǎn)為A,且經(jīng)過點(diǎn)B.
(1)求該拋物線的解析式;
(2)求當(dāng)y1≥y2時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖①,在△ABC中,∠ACB=2∠B,AD為∠BAC的角平分線,
求證:AB=AC+CD
小明同學(xué)經(jīng)過思考,得到如下解題思路:
在AB上截取AE=AC,連接DE,得到△ADE≌△ADC,從而易證AB=AC+CD
(1)請你根據(jù)以上解思路寫出證明過程;
(2)如圖②,若AD為△ABC的外角∠CAE平分線,交BC的延長線于點(diǎn)D,
∠D=25°,其他條件不變,求∠B的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點(diǎn)為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com