【題目】如圖,六邊形ABCDEFAFCD,ABDE,∠A=140°,∠B=100°,∠E=90°,:∠C、∠D、∠F的度數(shù)

【答案】∠C=120°,∠CDE=140°,∠F=130°.

【解析】試題分析:連接AD,由AF∥CD得出∠FAD=∠ADC,由AB∥DE得出∠BAD=∠ADE,故可得出∠CDE=∠BAF,∠FAD+∠ADE=∠ADC+∠BAD=∠BAF,再由四邊形內(nèi)角和定理即可得出∠F與∠C的度數(shù).

試題解析:

連接AD,

∵AF∥CD,

∴∠FAD=∠ADC.

∵AB∥DE,

∴∠BAD=∠ADE,

∴∠CDE=∠BAF=140°,

∴∠FAD+∠ADE=∠ADC+∠BAD=∠BAF=140°.

∵∠E=90°,

∴∠F=360°﹣140°﹣90°=130°.

∵∠B=100°,

∴∠C=360°﹣100°﹣140°=120°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,BAC=120°ADBC于點(diǎn)D,點(diǎn)PBA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,下面的結(jié)論: ①∠APO+DCO=30°②△OPC是等邊三角形;③AC=AO+AP;SABC=S四邊形AOCP,其中正確的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖14,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2S3,,S10,則S1+S2+S3+…+S10=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m
1)求地基的中心到邊緣的距離;
2己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)拋物線經(jīng)過點(diǎn)A (4,0),點(diǎn)B (1,-3) ,求該拋物線的解析式;

(2)如圖,要修建一個(gè)圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?

(3)如圖,點(diǎn)P>0),在軸正半軸上,過點(diǎn)P作平行于軸的直線,分別交拋物線于點(diǎn)A,B,交拋物線于點(diǎn)C,D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DE分別是邊AC、BC的中點(diǎn),FBC延長線上一點(diǎn),∠F=B

(l)AB=1O,求FD的長;

(2)AC=BC.求證:CDEDFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=-x-2x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y2=ax2+bx+c的頂點(diǎn)為A,且經(jīng)過點(diǎn)B.

1)求該拋物線的解析式;

2)求當(dāng)y1≥y2時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖①,在△ABC中,∠ACB=2∠B,AD為∠BAC的角平分線,

求證:AB=AC+CD

小明同學(xué)經(jīng)過思考,得到如下解題思路:

AB上截取AE=AC,連接DE,得到△ADE≌△ADC,從而易證AB=AC+CD

(1)請你根據(jù)以上解思路寫出證明過程;

(2)如圖②,若AD為△ABC的外角∠CAE平分線,交BC的延長線于點(diǎn)D,

∠D=25°,其他條件不變,求∠B的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程x2+4x﹣5=0的兩根.

(1)若拋物線的頂點(diǎn)為D,求S△ABC:S△ACD的值;

(2)若ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案