【題目】某中學號召全校學生進行安全教育網(wǎng)絡學習,并對部分學生的學習情況進行了隨機調(diào)查.對部分學生的成績(x為整數(shù),滿分100分)進行統(tǒng)計,并繪制了如下統(tǒng)計圖表.

調(diào)查結(jié)果頻數(shù)分布表

組別

分數(shù)段

頻數(shù)

A

a

B

96

C

126

D

126

E

180

合計

b

調(diào)查結(jié)果扇形統(tǒng)計圖

根據(jù)所給信息,解答下列問題:

1)填空:_________,_________

2)求扇形統(tǒng)計圖中,m的值及A組對應的圓心角的度數(shù);

3)若參加學習的同學共有1500人,請你估計成績不低于80分的同學有多少人.

【答案】172,600;(2m=30A組對應圓心角:43.2°;(3765人;

【解析】

1)根據(jù)C組有126人,占比21%,用126÷21%即可求出b,用樣本總?cè)藬?shù)分別減去BC、D、E四組人數(shù),即可求出a;

2)用E組人數(shù)180除以樣本總?cè)藬?shù)即可求出E組所占百分比,即可求出m,求出A組所占百分比,乘以360°即可求出A組對應的圓心角的度數(shù);

3)計算D、E兩組所占百分比,用樣本估計總體,即可求出1500人中成績不低于80分的學生數(shù).

解:(1126÷21%=600,故;600-180-126-126-96=72,故

2,∴m=30

360°×,

A組對應的圓心角的度數(shù)為43.2°;

3,

答:若參加學習的同學共有1500人,成績不低于80分的同學約有765人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個四邊形有且只有三個頂點在圓上,那么稱這個四邊形是該圓的聯(lián)絡四邊形,已知圓的半徑長為,這個圓的一個聯(lián)絡四邊形是邊長為的菱形,那么這個菱形不在圓上的頂點與圓心的距離是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一種紙巾盒,由盒身和圓弧蓋組成,通過圓弧蓋的旋轉(zhuǎn)來開關紙巾盒.如圖2是其側(cè)面簡化示意圖,已知矩形的長,寬,圓弧蓋板側(cè)面所在圓的圓心是矩形的中心,繞點旋轉(zhuǎn)開關(所有結(jié)果保留小數(shù)點后一位).

   

1)求所在的半徑長及所對的圓心角度數(shù);

2)如圖3,當圓弧蓋板側(cè)面從起始位置繞點旋轉(zhuǎn)時,求在這個旋轉(zhuǎn)過程中掃過的的面積.

參考數(shù)據(jù):,3.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標中,點A(m,n)在第一象限內(nèi),ABOAABOA,反比例函數(shù)y的圖象經(jīng)過點A,

1)當點B的坐標為(4,0)時(如圖1),求這個反比例函數(shù)的解析式;

2)當點B在反比例函數(shù)y的圖象上,且在點A的右側(cè)時(如圖2),用含字母m,n的代數(shù)式表示點B的坐標;

3)在第(2)小題的條件下,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,(為坐標原點,點,點中點,連接(繞點順時針旋轉(zhuǎn),得到,記旋轉(zhuǎn)角為,點的對應點分別是,連接中點,連接

1)如圖①,當時,求點的坐標;

2)如圖②,當時,求證,且;

3)當旋轉(zhuǎn)至點共線時,求點的坐標(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,,點D,E分別是邊,的中點,連接.繞點C按逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

1)問題發(fā)現(xiàn)

①當時,;②當時,;

2)拓展探究

試判斷:當時,的大小有無變化?請僅就圖2的情形給出證明;

3)問題解決

旋轉(zhuǎn)至時,請直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程(2m+1x2+4mx+2m30有兩個不相等的實數(shù)根.

1)求m的取值范圍;

2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C90°.

1)求證:CD是⊙O的切線;

2)若∠CDB60°,AB18,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,DAB上的一點,以CD為直徑的⊙OACE,連接BECDP,交⊙OF,連接DF,∠ABC=∠EFD

(1)求證:AB與⊙O相切;

(2)AD4BD6,則⊙O的半徑=

(3)PC2PF,BFa,求CP(a的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案