【題目】在﹣23,0,﹣1中,最小的數(shù)是( 。

A. 2B. 3C. 0D. 1

【答案】A

【解析】

有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小,據(jù)此判斷即可.

∵﹣2<﹣103,

∴在﹣23,0,﹣1中,最小的數(shù)是﹣2

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣x2+2x+5上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線y=﹣x+3于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).

(1)求出b、c的值,并寫出此二次函數(shù)的解析式;

(2)根據(jù)圖象,直接寫出函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;

(3)當(dāng)2x4時(shí),求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,是確定事件的是(

A. 買一張彩票會(huì)中獎(jiǎng)B. 拋一枚硬幣,反面向上

C. 打雷后,會(huì)下雨D. 在通常情況下,100°的水會(huì)沸騰

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長(zhǎng)度不限),用40米長(zhǎng)的籬笆圍成一個(gè)長(zhǎng)方形的倉(cāng)庫(kù).

(1)求長(zhǎng)方形的面積是150平方米,求出長(zhǎng)方形兩鄰邊的長(zhǎng);

(2)能否圍成面積220平方米的長(zhǎng)方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市有甲、乙兩種出租車,他們的服務(wù)質(zhì)量相同.甲的計(jì)價(jià)方式為:當(dāng)行駛路程不超過3千米時(shí)收費(fèi)10元,每超過1千米則另外收費(fèi)1.2元(不足1千米按1千米收費(fèi));乙的計(jì)價(jià)方式為:當(dāng)行駛路程不超過3千米時(shí)收費(fèi)8元,每超過1千米則另外收費(fèi)1.8元(不足1千米按1千米收費(fèi)).某人到該市出差,需要乘坐的路程為x千米.
(1)當(dāng)x=5時(shí),請(qǐng)分別求出乘坐甲、乙兩種出租車的費(fèi)用;
(2)用代數(shù)式表示此人分別乘坐甲、乙出租車各所需要的費(fèi)用;
(3)假設(shè)此人乘坐的路程為13千米多一點(diǎn),請(qǐng)問他乘坐哪種車較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購(gòu)買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

(1)用含x的式子表示廚房的面積m2 , 臥室的面積m2
(2)此經(jīng)濟(jì)適用房的總面積為m2
(3)已知廚房面積比衛(wèi)生間面積多2m2 , 且鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請(qǐng)解答下列問題:

(1)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)畫出A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的A2B2C2,并寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA、OB、OC都是O的半徑,AOB=2BOC,

(1)求證:ACB=2BAC;

(2)若AC平分OAB,求AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案