【題目】如圖為某班35名學(xué)生投籃成績的條形圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全,已知此班學(xué)生投籃成績的中位數(shù)是5,下列選項(xiàng)正確的是_______.
①3球以下(含3球)的人數(shù);②4球以下(含4球)的人數(shù); ③5球以下(含5球)的人數(shù);④6球以下(含6球)的人數(shù).
【答案】①②④
【解析】
根據(jù)題意和條形統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得各個(gè)選項(xiàng)中對應(yīng)的人數(shù),從而可以解答本題.
因?yàn)楣灿?/span>35人,而中位數(shù)應(yīng)該是第18個(gè)數(shù),所以第18個(gè)數(shù)是5,從圖中看出第四個(gè)柱狀圖的范圍在6以上,所以投4個(gè)球的有7人.可得:3球以下(含3球)的人數(shù)為10人,4球以下(含4球)的人數(shù)10+7=17人,6球以下(含6球)的人數(shù)35-1=34.故只有5球以下(含5球)的人數(shù)無法確定.
故答案為:①②④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y﹣2與x成正比例,當(dāng)x=2時(shí),y=6.
(1)求y與x之間的函數(shù)解析式.
(2)在所給直角坐標(biāo)系中畫出函數(shù)圖象.
(3)由函數(shù)圖象直接寫出當(dāng)﹣2≤y≤2時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,對角線AC與AB、AD的夾角分別為α、β,點(diǎn)E是AC上任意一點(diǎn),給出如下結(jié)論:①AB sinα=AD sinβ;②S△ABE=S△ADE;③ADsinα=AB sinβ. 其中正確的個(gè)數(shù)有( 。
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識競賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識競賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】10袋小麥稱重后記錄如下(單位:kg).88.8,91,91.5,89,91.2,91.3,88.9,91.2,91,91.1.
(1)如果每袋小麥以90 kg為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),這10袋小麥總計(jì)超過多少千克或不足多少千克?
(2)10袋小麥一共多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC=65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點(diǎn)O順時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結(jié)論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結(jié)論的序號是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=3a2b-2ab2+abc,小明同學(xué)錯(cuò)將“2A-B”看成“2A+B”,算得結(jié)果為4a2b-3ab2+4abc.
(1)求出2A-B的結(jié)果;
(2)小強(qiáng)同學(xué)說(1)中的結(jié)果的大小與c的取值無關(guān),正確嗎?若a=,b=,求(1)中式子的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因?yàn)?/span>sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因?yàn)?/span>sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地當(dāng)α為銳角時(shí)有sin(180°+α)=﹣sinα,由此可知:sin240°=( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com