【題目】如圖,在RtABC中,∠ACB=90°AC=BC=4,點DBC邊的中點,將ABC繞點D逆時針旋轉45度,得到A′B′C′,B′C′AB交于點E,則圖中陰影部分四邊形ACDE的面積為________.

【答案】7

【解析】

BED的面積為S,根據(jù)題意證明BED∽△BCA,根據(jù)相似三角形的面積比等于相似比的平方列出算式,計算得到答案.

BED的面積為S,

∵∠ACB=90°,AC=BC=4

AB=4,ABC的面積為×4×4=8,

∵點DBC邊的中點,

BD=BC=2

∵∠EDB=45°,∠B=45°

∴∠DEB=90°,

∴△BED∽△BCA

,

解得S=1,

陰影部分四邊形ACDE的面積為:8-1=7

故答案為:7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB2,∠BAC30°,將菱形ABCD繞點A逆時針旋轉120°,點B的對應點為點B,點C的對應點為點C,點D的對應點為點D,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB3cm.點P從點A出發(fā),以每秒1cm的速度向終點B運動,同時點Q從點B出發(fā),以每秒3cm的速度沿BCCDDA向終點A運動,到達各自終點時停止運動.設動點的運動時間為x秒,△PBQ的面積為ycm2,則能正確表示△PBQ的面積y與時間x的關系的圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH3.4m.當起重臂AC長度為9m,張角∠HAC118°時,求操作平臺C離地面的高度(結果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形中,,垂足為,,,把四邊形沿所在直線折疊,使點落在上的點處,點落在點處,于點.

1)證明:;

2)求四邊形面積;

3)如圖2,點從點出發(fā),沿路徑以每秒的速度勻速運動,設運動時間為秒,當為何值時,的面積與四邊形的面積相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩張矩形紙片ABCDCEFG完全相同,且AB=CE,ADAB

操作發(fā)現(xiàn):

1)如圖1,點DGC上,連接AC、CF、CG、AG,則ACCF有何數(shù)量關系和位置關系?并說明理由.

實踐探究:

2)如圖2,將圖1中的紙片CEFG以點C為旋轉中心逆時針旋轉,當點D落在GE上時停止旋轉,則AGGF在同一條直線上嗎?請判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB4,AC2BC5,點I為△ABC的內心,將∠BAC平移,使其頂點與點I重合,則圖中陰影部分的周長為( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD紙片中,若沿折痕EG對折,則頂點B落在AD邊上的點F處,頂點C落在點N處,點MFNDC交點,且AD8

1)當點FAD的中點時,求FDM的周長;

2)當點F不與點ADAD的中點重合時,若AE+GD19,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形ACDE為平行四邊形,延長EA至點B,使EABA,連接BDAC于點F,連接BC

1)求證:ADBC

2)若BDDE,當∠E   °時,四邊形ABCD為正方形請說明理由.

查看答案和解析>>

同步練習冊答案