【題目】如圖1,已知拋物線y=x2﹣x﹣3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D
(1)求出點(diǎn)A,B,D的坐標(biāo);
(2)如圖1,若線段OB在x軸上移動(dòng),且點(diǎn)O,B移動(dòng)后的對(duì)應(yīng)點(diǎn)為O′,B′.首尾順次連接點(diǎn)O′、B′、D、C構(gòu)成四邊形O′B′DC,請(qǐng)求出四邊形O′B′DC的周長(zhǎng)最小值.
(3)如圖2,若點(diǎn)M是拋物線上一點(diǎn),點(diǎn)N在y軸上,連接CM、MN.當(dāng)△CMN是以MN為直角邊的等腰直角三角形時(shí),直接寫出點(diǎn)N的坐標(biāo).
【答案】(1)A(﹣2,0),B(4,0),D(1,﹣);(2)4++;(3)N的坐標(biāo)為(0,)、(0,)、(0,﹣)或(0,﹣).
【解析】
試題分析:(1)令拋物線解析式中y=0,解關(guān)于x的一元二次方程即可求出點(diǎn)A、B的坐標(biāo),再利用配方法將拋物線解析式進(jìn)行配方即可得出頂點(diǎn)D的坐標(biāo);(2)作點(diǎn)C(0,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)C′(0,3),將點(diǎn)C′(0,3)向右平移4個(gè)單位得到點(diǎn)C″(4,3),連接DC″,交x軸于點(diǎn)B′,將點(diǎn)B′向左平移4個(gè)單位得到點(diǎn)O′,連接CO′,CO″,則四邊形O′B′C′C″為平行四邊形,此時(shí)四邊形O′B′DC周長(zhǎng)取最小值.再根據(jù)兩點(diǎn)間的距離公式求出CD、DC″的長(zhǎng)度,即可得出結(jié)論;(3)按點(diǎn)M的位置不同分兩種情況考慮:①點(diǎn)M在直線y=x﹣3上,聯(lián)立直線與拋物線解析式求出點(diǎn)M的坐標(biāo),結(jié)合點(diǎn)C的坐標(biāo)以及等腰直角三角形的性質(zhì)即可得出點(diǎn)N的坐標(biāo);②點(diǎn)M在直線y=﹣x﹣3上,聯(lián)立直線與拋物線解析式求出點(diǎn)M的坐標(biāo),結(jié)合點(diǎn)C的坐標(biāo)以及等腰直角三角形的性質(zhì)即可得出點(diǎn)N的坐標(biāo).綜合兩種情況即可得出結(jié)論.
試題解析:(1)令y=x2﹣x﹣3中y=0,則x2﹣x﹣3=0,解得:x1=﹣2,x2=4,∴A(﹣2,0),B(4,0).∵y=x2﹣x﹣3=(x2﹣2x)﹣3=(x﹣1)2﹣,∴D(1,﹣).(2)令y=x2﹣x﹣3中x=0,則y=﹣3,∴C(0,﹣3).D(1,﹣),O′B′=OB=4.如圖1,
作點(diǎn)C(0,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)C′(0,3),將點(diǎn)C′(0,3)向右平移4個(gè)單位得到點(diǎn)C″(4,3),連接DC″,交x軸于點(diǎn)B′,將點(diǎn)B′向左平移4個(gè)單位得到點(diǎn)O′,連接CO′,C′O′,則四邊形O′B′C′C″為平行四邊形,此時(shí)四邊形O′B′DC周長(zhǎng)取最小值.此時(shí)C四邊形O′B′DC=CD+O′B′+CO′+DB′=CD+O′B′+DC″.∵O′B′=4,CD==,C″D==,∴四邊形O′B′DC的周長(zhǎng)最小值為4++.(3)△CMN是以MN為直角邊的等腰直角三角形分兩種情況(如圖2):
,①過點(diǎn)C作直線y=x﹣3交拋物線于點(diǎn)M,聯(lián)立直線CM和拋物線的解析式得:,解得:或(舍去),∴M(,).∵△CMN為等腰直角三角形,C(0,﹣3),∴點(diǎn)N的坐標(biāo)為(0,)或(0,);②過點(diǎn)C作直線y=﹣x﹣3交拋物線于點(diǎn)M,聯(lián)立直線CM和拋物線的解析式得:,解得:或(舍去),∴M(﹣,﹣).∵△CMN為等腰直角三角形,C(0,﹣3),∴點(diǎn)N的坐標(biāo)為(0,﹣)或(0,﹣).綜上可知:當(dāng)△CMN是以MN為直角邊的等腰直角三角形時(shí),點(diǎn)N的坐標(biāo)為(0,)、(0,)、(0,﹣)或(0,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長(zhǎng)線于D點(diǎn),OC交AB于E點(diǎn).
(1)求∠D的度數(shù);
(2)求證:AC2=ADCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今夏,十堰市王家河村瓜果喜獲豐收,果農(nóng)王二胖收獲西瓜20噸,香瓜12噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛將這批瓜果全部運(yùn)往外地銷售,已知一輛甲種貨車可裝西瓜4噸和香瓜1噸,一輛乙種貨車可裝西瓜和香瓜各2噸.
(1)果農(nóng)王二胖如何安排甲、乙兩種貨車可一次性地運(yùn)到銷售地?有幾種方案?
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)300元,乙種貨車每輛要付運(yùn)輸費(fèi)240元,則果農(nóng)王二胖應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張圓心角為108°,半徑為4cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個(gè)底面半徑為1cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的面積為( ).
A.0.8πcm2 B.3.2πcm2 C.4πcm2 D.4.8πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程kx2+2x+1=0有實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.k≤1B.k<1C.k≤1且k≠0D.k<1且k≠0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com