【題目】1)如圖1,在△ABC中,點MBC邊的中點,且MABC,求證:∠BAC90°.

2)如圖2,直線a、b相交于點A,點CE分別是直線b、a上兩點,EDb,垂足為點D,點MEC的中點,MDMB,DE2BC3,求△ADE和△ABC的面積之比.

【答案】1)見解析;(2

【解析】

1)根據(jù)點MBC的中點,得到BMCMBC.又MABC,根據(jù)等量代換得到BMCMMA,根據(jù)等邊對等角有BAMBCAMC,又BAM+B+CAM+C180°,即可得到BAM+CAM90°,即可證明.

2)根據(jù)(1)的結(jié)論,可得EBC90°,即可證明ADE∽△ABC,根據(jù)相似三角形的性質(zhì)即可解答.

1)證明:MBC的中點,

BMCMBC

MABC,

BMCMMA,

∴∠BAMB,CAMC,

∴∠BAM+B+CAM+C180°

2BAM+2CAM180°,

∴∠BAM+CAM90°,即BAC90°

2)解:MEC的中點,EDAC于點D,

DMEC

BMDM,

BMEC

∴∠EBC90°

∴∠ADEABC90°

∵∠DAEBAC,

∴△ADE∽△ABC

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+c過點A2,0)和B33).

1)求拋物線的表達式;

2)點M在第二象限的拋物線上,且∠MBO=∠ABO

①直線BMx軸于點N,求線段ON的長;

②延長BO交拋物線于點C,點P是平面內(nèi)一點,連接PCOP,當POC∽△MOB時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙上一點,,垂足為、分別是、上一點(不與端點重合),如果,下面結(jié)論:①;②;③;④;⑤.其中正確的是(

A. ①②③B. ①③⑤C. ④⑤D. ①②⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑CD2,弧AC的度數(shù)為80°,點B是弧AC的中點,點P在直徑CD上移動,則BP+AP的最小值為(

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)m,n是任意兩個實數(shù),規(guī)定m,n兩數(shù)較大的的數(shù)稱作這兩個數(shù)的絕對最值,用sec(m,n)表示。例如:sec(-1,-2)=-1sec(1,2)=2,sec(0,0)=0,參照上面的材料,解答下列問題:

1sec(,3.14)=________,sec(,)=__________;

2)若sec(-3x-1,x+1)=-3x-1,x的取值范圍;

3)求函數(shù)的圖象的交點坐標,函數(shù)圖象如圖所示,請你在圖中作出函數(shù)的圖象,并根據(jù)圖象直接寫出sec-x+2, )的最小值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P(不與點A,B重合)為半圓上一點,將圖形沿BP折疊,分別得到點A,O的對應點點A′,O′,過點ACAB,若AC與半圓O恰好相切,則∠ABP的大小為_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分別靜止在A、B處(BA的正北方)是我國兩艘軍艦相距10km,為在D處的一艘我國貨輪執(zhí)行護航任務,A處軍艦測得D點在南偏東63.4°,B處軍艦測得D點在南偏東36.8°.貨輪沿著北偏東16.4°方向航行了12km到達C點,此時在B處的軍艦測得C點在南偏東73.6°方向上.

1)求∠BCD的度數(shù);

2)求AD的長.(參考數(shù)據(jù):sin36.8°≈0.60,cos36.8°≈0.80,tan26.6°≈0.50,2.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,以AC為直徑作⊙OBC于點D,交AB于點G,且DBC中點,DEAB,垂足為E,交AC的延長線于點F.

(1)求證:直線EF是⊙O的切線;

(2)若CF=3,cosA=0.4,求出⊙O的半徑和BE的長;

(3)連接CG,在(2)的條件下,求CG:EF的值.

查看答案和解析>>

同步練習冊答案