20.并求所有這些整數(shù)的數(shù)的和,中滿足到10和-10的距離之差大于1而小于5的整數(shù)的點,(5)若點表示的數(shù)為.當點在什么位置時.取得的值最小.并求出這個最小值.">
【題目】已知、在數(shù)軸上分別表示有理數(shù),;
(1)對照數(shù)軸填寫下表:
6 | -1 | -2 | 4 | |
4 | -5 | 3 | -4 | |
、兩點之間的距離 |
(2)若、兩點間的距離記為,試問:和,有何數(shù)量關系?
(3)寫出所有符合條件的整數(shù)點,使它到10和-10的距離之和為span>20,并求所有這些整數(shù)的數(shù)的和;
(4)找出(3)中滿足到10和-10的距離之差大于1而小于5的整數(shù)的點;
(5)若點表示的數(shù)為,當點在什么位置時,取得的值最小,并求出這個最小值.
【答案】(1)2、4、5、8;(2);(3),,,,,,,,,,0,和;(4),;(5),最小值5.
【解析】
(1)根據(jù)數(shù)軸的知識,結合表格中的數(shù)即可得出答案.
(2)由(1)所填寫的數(shù)字,即可得出結論.
(3)由數(shù)軸的知識,可得出只要在-10和10之間的整數(shù)均滿足題意.
(4)根據(jù)(3)的式子即可得到結果;
(5)根據(jù)絕對值的幾何意義,可得出-1和4之間的任何一點均滿足題意.
解:(1)填表如下:
6 | -1 | -2 | 4 | |
4 | -5 | 3 | -4 | |
、兩點之間的距離 | 2 | 4 | 5 | 8 |
(2)由(1)可得:d=|a-b|或d=|b-a|;
(3)只要在-10和10之間的整數(shù)均滿足到-10和10的距離之和為20,有:-10、-9、-8、-7、-6、-5、-4、-3、-2、-1、0、1、2、3、4、5、6、7、8、9、10,
所有滿足條件的整數(shù)之和為:-10+(-9)+(-8)+(-7)+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7+8+9+10=0;
(4)根據(jù)數(shù)軸的意義可得,由(3)中的數(shù)滿足到10和-10的距離之差大于1而小于5的整數(shù)的點有數(shù):±2,±1.
(5)因為
所以根據(jù)數(shù)軸的幾何意義可得-1和4之間的任何一點均能使|x+1|+|x-4|取得的值最小.這個最小值是:4-(-1)=5
科目:初中數(shù)學 來源: 題型:
【題目】小明在上學的路上要經過多個路口,每個路口都設有紅、黃、綠三種信號燈,假設在各路口遇到信號燈是相互獨立的.
(1).如果有2個路口,求小明在上學路上到第二個路口時第一次遇到紅燈的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2).如果有n個路口,則小明在每個路口都沒有遇到紅燈的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運算:①當n為奇數(shù)時,F(n)=3n+1;②當n為偶數(shù)時,F(n)(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行,例如,取n=13,則:若n=24,則第100次“F”運算的結果是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師在黑板上出了一道解方程的題:,小明馬上舉起了手,要求到黑板上去做,他是這樣做的:4(2x﹣1)=1﹣3(x+2),①
8x﹣4=1﹣3x﹣6,②
8x+3x=1﹣6+4,③
11x=﹣1,④
x=﹣.⑤
老師說:小明解一元一次方程的一般步驟都掌握了,但解題時有一步做錯了.請你指出他錯在第 步(填編號),然后再細心地解下面的方程,相信你一定能做對.
(1)5(x+8)=6(2x﹣7)+5;
(2) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AE⊥BD于點E,CF平分∠BCD,交EA的延長線于點F,且BC=4,CD=2,給出下列結論:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=,其中正確的是______.(填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】濱海新區(qū)某中學為了了解學生每周在校體育鍛煉的時間,在本校隨機抽取了若干名學生進行調查,并依據(jù)調查結果繪制了不完整的統(tǒng)計圖表,請根據(jù)圖表信息解答下列問題
時間(小時) | 頻數(shù)(人數(shù)) | 百分比 |
2≤t<3 | 4 | 10% |
3≤t<4 | 10 | 25% |
4≤t<5 | a | 15% |
5≤t<6 | 8 | b% |
6≤t<7 | 12 | 30% |
合計 | 40 | 100% |
(1)表中的a= ,b= ;
(2)請將頻數(shù)分布直方圖補全;
(3)若繪制扇形統(tǒng)計圖,時間段6≤x<7所對應扇形的圓心角的度數(shù)是多少?
(4)若該校共有1200名學生,估計全校每周在校參加體育鍛煉時間至少有4小時的學生約為多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:將邊長為的正三角形的三條邊分別等分,連接各邊對應的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
探究:要研究上面的問題,我們不妨先從最簡單的情形入手,進而找到一般性規(guī)律.
探究一:將邊長為2的正三角形的三條邊分別二等分,連接各邊中點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
如圖①,連接邊長為2的正三角形三條邊的中點,從上往下看:
邊長為1的正三角形,第一層有1個,第二層有3個,共有個;
邊長為2的正三角形一共有1個.
探究二:將邊長為3的正三角形的三條邊分別三等分,連接各邊對應的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
如圖②,連接邊長為3的正三角形三條邊的對應三等分點,從上往下看:邊長為1的正三角形,第一層有1個,第二層有3個,第三層有5個,共有個;邊長為2的正三角形共有個.
探究三:將邊長為4的正三角形的三條邊分別四等分(圖③),連接各邊對應的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
(仿照上述方法,寫出探究過程)
結論:將邊長為的正三角形的三條邊分別等分,連接各邊對應的等分點,則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個?
(仿照上述方法,寫出探究過程)
應用:將一個邊長為25的正三角形的三條邊分別25等分,連接各邊對應的等分點,則該三角形中邊長為1的正三角形有______個和邊長為2的正三角形有______個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個大小完全一樣長方形OABC和EFGH重合著放在一起,邊OA、EF在數(shù)軸上, O為數(shù)軸原點(如圖1),長方形OABC的邊長OA的長為6個坐標單位.
(1)數(shù)軸上點A表示的數(shù)為_____.
(2)將長方形EFGH沿數(shù)軸所在直線水平移動.
①若移動后的長方形EFGH與長方形OABC重疊部分的面積恰好等于長方形OABC面積的一半時,則移動后點F在數(shù)軸上表示的數(shù)為_____.
②若長方形EFGH向左水平移動后,D為線段AF的中點,求當長方形EFGH移動距離x為何值時,D、E兩點在數(shù)軸上表示的數(shù)時互為相反數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司的某種產品由一家商店代銷,雙方協(xié)議不論這種產品的銷售情況如何,該公司每月都要付給商店a元代銷費,同時商店每銷售一件產品有b元提成.該商店一月份銷售了m件,二月份銷售了n件.
(1)用代數(shù)式表示這兩個月公司應付給商店的代銷總金額;
(2)假設代銷費為每月200元,每件產品的提成為2元,該商店一月份銷售了200件,二月份銷售了260件,求該商店這兩個月銷售此種產品的收益.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com