【題目】如圖,⊙O中,弦AB、CD相交點P,弦CA、BD的延長線交于S,∠APD=2m°,∠PAC=m°+15°.
(1)求∠S的度數(shù);
(2)連AD,BC,若,求m的值.
【答案】(1) 30°;(2) m=45
【解析】
(1)由圓周角定理可知:∠PAC=∠PDB=m°+15°,從而可知∠PDS=∠PAS,由于∠APD=2m°,利用四邊形內(nèi)角和即可得出∠S的度數(shù);
(2)過點C作CE⊥BD于點E,由圓內(nèi)接四邊形的性質可知:∠DAS=∠SBC,從而可證明△SAD∽△SBC,從而可求出ED、CE的長度,從而可得出∠ECD的度數(shù),進而求出m的值.
(1)由圓周角定理可知:∠PAC=∠PDB=m°+15°,
∴∠PDS=∠PAS=180﹣(m°+15°)=165°﹣m°,
∵∠APD=2m°,
∴∠S=360°﹣∠PDS﹣∠PAS﹣∠APD
=360°﹣2(165°﹣m°)﹣2m°
=30°,
(2)過點C作CE⊥BD于點E,
由圓內(nèi)接四邊形的性質可知:∠DAS=∠SBC,
∵∠S=∠S,
∴△SAD∽△SBC,
∴,
設SD=1,SC=,
∵∠S=30°,
,
,
,
,
∴∠ECD=30°,
∴∠EDC=60°,
∴m°+15°=60°,
∴m=45.
科目:初中數(shù)學 來源: 題型:
【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質量問題倍受人們關注.某單位計劃在室內(nèi)安裝空氣凈化裝置,需購進A、B兩種設備.每臺B種設備價格比每臺A種設備價格多0.7萬元,花3萬元購買A種設備和花7.2萬元購買B種設備的數(shù)量相同.
(1)求A種、B種設備每臺各多少萬元?
(2)根據(jù)單位實際情況,需購進A、B兩種設備共20臺,總費用不高于15萬元,求A種設備至少要購買多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于反比例函數(shù)y=,下列說法不正確的是( 。
A. 函數(shù)圖象分別位于第一、第三象限
B. 當x>0時,y隨x的增大而減小
C. 函數(shù)圖象經(jīng)過點(1,2)
D. 若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了開展陽光體育運動,某市教體局做了一個隨機調查,調查內(nèi)容是:每天鍛煉是否超過1h及鍛煉未超過1h的原因.他們隨機調查了600名學生,用所得的數(shù)據(jù)制成了扇形統(tǒng)計圖和頻數(shù)分布直方圖(圖1、圖2).
根據(jù)圖示,請回答以下問題:
(1)“沒時間”的人數(shù)是 ,并補全頻數(shù)分布直方圖;
(2)2016年該市中小學生約40萬人,按此調查,可以估計2016年全市中小學生每天鍛煉超過1h的約有 萬人;
(3)在(2)的條件下,如果計劃2018年該市中小學生每天鍛煉未超過1h的人數(shù)降到7.5萬人,求2016年至2018年鍛煉未超過1h人數(shù)的年平均降低的百分率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某五金商店準備從機械廠購進甲、乙兩種零件進行銷售.若每個甲種零件的進價比每個乙種零件的進價少2元,且用900元正好可以購進50個甲種零件和50個乙種零件.
(1)求每個甲種零件、每個乙種零件的進價分別為多少元?
(2)若該五金商店本次購進甲種零件的數(shù)量比購進乙種零件的數(shù)量的3倍還少5個,購進兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進價)超過371元,通過計算求出該五金商店本次從機械廠購進甲、乙兩種零件有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,點D、E分別在AB、AC上,,,
求證:;
若,把繞點A逆時針旋轉到圖2的位置,點M,P,N分別為DE,DC,BC的中點,連接MN,PM,PN.
判斷的形狀,并說明理由;
把繞點A在平面內(nèi)自由旋轉,若,,試問面積是否存在最大值;若存在,求出其最大值若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com