【題目】在平面直角坐標系中,將直角三角形的直角頂點放在點處,兩直角邊與坐標軸交于如圖所示的點和點,則的值為______.

【答案】16

【解析】

PPMx軸于M,PNy軸于N,由P8,8),得到PM=MO=ON=PN=8,由于∠MPB+BPN=MPN=90°,∠MPB+MPA=90°,于是得到∠BPN=MPA,推出△PBN≌△APM,根據(jù)全等三角形的性質(zhì)得到AM=BN,然后根據(jù)線段的和差關(guān)系,即可得到結(jié)論;

解:如圖,過PPMx軸于M,PNy軸于N,

P8,8),

PM=MO=ON=PN=8,

∵∠MPB+BPN=MPN=90°,∠MPB+MPA=APB=90°,

∴∠BPN=MPA

∵∠BNP=AMP=90°,

∴△PBN≌△PAMASA),

BN=AM,

;

故答案為:16.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中:①∠A+B=C,②∠A:B:C=1: 2:3,③∠A=90°﹣B,④∠A=B=C中,能確定ABC是直角三角形的條件有(   )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,A點表示2,現(xiàn)在點A向右移動兩個單位后到達點B;再向左移動10個單位到達C點:

1)請在數(shù)軸上表示出A點開始移動時位置及BC點位置;

2)當A點移動到C點時,若要再移動到原點,問必須向哪個方向移動多少個單位?

3)請把A點從開始移動直至到達原點這一過程,用一個有理數(shù)算式表達出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中,A,B,C,P,Q,R顯示了6名學生平均每周用于閱讀課外書的時間和用于看電視的時間(單位:h)

(1)用有序數(shù)對表示圖中點A,B,C,P,Q,R

(2)圖中方格紙的對角線的左上方的點有什么共同的特點?它右下方的點呢?

(3)三角形ABC的圖形經(jīng)過怎樣的變換后得到三角形PQR的圖形?其中點A對應(yīng)點P,B對應(yīng)點Q,C對應(yīng)點R

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A(1,0)及點B.


(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場以每件42元的價錢購進一種服裝,根據(jù)試銷得知:這種服裝每天的銷售量t(件),與每件的銷售價x(元/件)可看成是一次函數(shù)關(guān)系:t=-3x+204.

1)寫出商場賣這種服裝每天的銷售利潤與每件的銷售價之間的函數(shù)關(guān)系式(每天的銷售利潤是指所賣出服裝的銷售價與購進價的差);

(2)通過對所得函數(shù)關(guān)系式進行配方,指出:商場要想每天獲得最大的銷售利潤,每件的銷售價定為多少最為合適;最大銷售利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,,是對角線上的一個動點,若的最小值是10,則長為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖像與性質(zhì)進行了探究.請補充完整:

1)先填表,再在如圖所示的平面直角坐標系中,描全表中各對對應(yīng)值為坐標的點,并畫出該函數(shù)的圖像:

x

-5

-4

-3

-2

0

1

2

3

2

3

-3

0

2)結(jié)合函數(shù)的圖像,說出兩條不同類型的性質(zhì);

________________________________;____________________________________

的圖像是由的圖像如何平移得到?

___________________________________________

3)當函數(shù)值時,x的取值范圍是____________span>.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知在正方形ABCD,FCD邊上一點(不與C、D重合),過點DDGBFBF延長線于點G連接AGBD于點E,CD于點M,連接EFDG=4,AG=,EF的長為____________

查看答案和解析>>

同步練習冊答案