【題目】如圖,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤10),過點D作DF⊥BC于點F,連接DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(2)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
【答案】(1)能,當(dāng)t=秒時,四邊形AEFD為菱形,見解析;(2)當(dāng)t=8或5秒時,△DEF為直角三角形,見解析.
【解析】
(1)能.首先證明四邊形AEFD為平行四邊形,當(dāng)AE=AD時,四邊形AEFD為菱形,即40﹣4t=2t,解方程即可解決問題;
(2)分三種情形討論即可.
(1)證明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四邊形AEFD為平行四邊形,
當(dāng)AE=AD時,四邊形AEFD為菱形,
即40﹣4t=2t,解得t=.
∴當(dāng)t=秒時,四邊形AEFD為菱形.
(2)①當(dāng)∠DEF=90°時,由(1)知四邊形AEFD為平行四邊形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=t,
又AD=40﹣4t,即40﹣4t=t,解得t=8;
②當(dāng)∠EDF=90°時,四邊形EBFD為矩形,在Rt△AED中∠A=60°,則∠ADE=30°,
∴AD=2AE,即40﹣4t=4t,解得t=5.
③若∠EFD=90°,則E與B重合,D與A重合,此種情況不存在.
綜上所述,當(dāng)t=8或5秒時,△DEF為直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(x1,y1),B(x2,y2),若x1x2+y1y2=0,且A,B均不為原點,則稱A和B互為正交點.比如:A(1,1),B(2,﹣2),其中1×2+1×(﹣2)=0,那么A和B互為正交點.
(1)點P和Q互為正交點,P的坐標(biāo)為(﹣2,3),
①如果Q的坐標(biāo)為(6,m),那么m的值為多少;
②如果Q的坐標(biāo)為(x,y),求y與x之間的關(guān)系式;
(2)點M和N互為正交點,直接寫出∠MON的度數(shù);
(3)點C,D是以(0,2)為圓心,半徑為2的圓上的正交點,以線段CD為邊,構(gòu)造正方形CDEF,圓心F在正方形CDEF的外部,求線段OE長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C'處,連接C'D交AB于點E,連接BC',當(dāng)△BC'D是直角三角形時,DE的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線m:與x軸于點A、點A在點B的左側(cè),與y軸交于點將拋物線m繞點B旋轉(zhuǎn),得到新的拋物線n,它的頂點為,與x軸的另一個交點為.
當(dāng),時,求拋物線n的解析式;
求證:四邊形是平行四邊形;
當(dāng)時,四邊形可能是矩形嗎?若能,請求出拋物線m的解析式;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=30°,斜邊AB=2,動點P在AB邊上,動點Q在AC邊上,且∠CPQ=90°,則線段CQ長的最小值=__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線交于A,B兩點,交x軸于D,C兩點,已知,.
求拋物線的函數(shù)表達式并寫出拋物線的對稱軸;
在直線AB下方的拋物線上是否存在一點E,使得的面積最大?如果存在,求出E點坐標(biāo);如果不存在,請說明理由.
為拋物線上一動點,連接PA,過點P作交y軸于點Q,問:是否存在點P,使得以A、P、Q為頂點的三角形與相似?若存在,請直接寫出所有符合條件的P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:007漁船在南海海面上沿正東方向勻速航行,在A點觀測到漁船C在北偏東60°方向的我國某傳統(tǒng)漁場捕魚作業(yè).若007漁船航向不變,航行半小時后到達B點,觀測到漁船C在東北方向上.問:007漁船再按原航向航行多長時間,離漁船C的距離最近?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com