【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)求證:AD和CE垂直.
【答案】
(1)證明:∵△ABC和△DBE是等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,
即∠ABD=CBE,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS),
∴AD=CE
(2)證明:延長AD分別交BC和CE于G和F,如圖所示:
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.
【解析】(1)由等腰直角三角形的性質(zhì)得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,證出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,證出結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點A(﹣1,0),B(0,),C(2,0),其對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,則PB+PD的最小值為 ;
(3)M(x,t)為拋物線對稱軸上一動點.
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點D,射線PD交射線CA于點E.
(1)若點E在線段CA的延長線上,設BP=x,AE=y,求y關于x的函數(shù)關系式,并寫出x的取值范圍.
(2)當BP=時,試說明射線CA與⊙P是否相切.
(3)連接PA,若S△APE=S△ABC,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,射線OM平分∠AOC,ON⊥OM,若∠AOM=35°,則∠CON的度數(shù)為( 。
A.35°
B.45°
C.55°
D.65°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解七年級同學每天的睡眠時間,在七年級的10個班中,每班抽5名學生做調(diào)查,這一調(diào)查中,總體是指_____,樣本是指_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標系的原點,A、B、C的坐標分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當這兩點中有一點到達自己的終點時,另一點也停止運動.設P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應的t的值和P、Q的坐標;如不可能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com