【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點(diǎn)P. 求證:∠ANC = ∠ABE.
應(yīng)用:Q是線段BC的中點(diǎn),連結(jié)PQ. 若BC = 6,則PQ = ___________.
【答案】(1)證明見解析;(2)PQ=3
【解析】試題分析:根據(jù)正方形性質(zhì)得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,證出△ANC≌△ABE即可.
試題解析:(1)∵四邊形ANMB和ACDE是正方形,
∴AN=AB,AC=AE,∠NAB=∠CAE=90°,
∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,
∴∠NAC=∠BAE,
在△ANC和△ABE中
∴△ANC≌△ABE(SAS),
∴∠ANC=∠ABE.
(2)∵四邊形NABM是正方形,
∴∠NAB=90°,
∴∠ANC+∠AON=90°,
∵∠BOP=∠AON,∠ANC=∠ABE,
∴∠ABP+∠BOP=90°,
∴∠BPC=∠ABP+∠BOP=90°,
∵Q為BC中點(diǎn),BC=6,
∴PQ=BC=3,
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn).
求拋物線的解析式;
在上方的拋物線上有一動(dòng)點(diǎn).
①如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到某位置時(shí),以,為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);
②如圖,過點(diǎn),的直線交于點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點(diǎn)A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( 。
A. ∠1+∠2=60° B. ∠2﹣∠1=30° C. ∠1=2∠2. D. ∠1+2∠2=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),
C(3,4)
⑴ 作出與△ABC關(guān)于y軸對稱△A1B1C1,并寫出 三個(gè)頂點(diǎn)的坐標(biāo)為:A1( ),B1( ),C1( );
⑵ 在x軸上找一點(diǎn)P,使PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo);
⑶ 在 y 軸上是否存在點(diǎn) Q,使得S△AOQ=S△ABC,如果存在,求出點(diǎn) Q 的坐標(biāo),如果不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,已知木欄總長為100米.
(1)已知a=20,矩形菜園的一邊靠墻,另三邊一共用了100米木欄,且圍成的矩形菜園面積為450平方米.如圖1,求所利用舊墻AD的長;
(2)已知0<α<50,且空地足夠大,如圖2.請你合理利用舊墻及所給木欄設(shè)計(jì)一個(gè)方案,使得所圍成的矩形菜園ABCD的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)頂點(diǎn)A關(guān)于x軸對稱的點(diǎn)A′的坐標(biāo)(____________),頂點(diǎn)B的坐標(biāo)(____________),頂點(diǎn)C關(guān)于原點(diǎn)對稱的點(diǎn)C′的坐標(biāo)(____________).
(2)△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10.
(1)如圖1,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn),求E點(diǎn)的坐標(biāo);
(2)如圖2,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E′、F,將△E′OF沿E′F折疊,使O點(diǎn)落在AB邊上的D′點(diǎn),過D′作D′G⊥C′O交E′F于T點(diǎn),交OC′于G點(diǎn),T坐標(biāo)為(3,m),求m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周未,小麗騎自行車從家出發(fā)到野外郊游,從家出發(fā)0.5小時(shí)到達(dá)甲地,游玩一段時(shí)間后按原速前往乙地,小麗離家1小時(shí)20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時(shí),恰好經(jīng)過甲地,如圖是她們距乙地的路程y(km)與小麗離家時(shí)間x(h)的函數(shù)圖象.
(1)小麗騎車的速度為 km/h,H點(diǎn)坐標(biāo)為 ;
(2)求小麗游玩一段時(shí)間后前往乙地的過程中y與x的函數(shù)關(guān)系;
(3)小麗從家出發(fā)多少小時(shí)后被媽媽追上?此時(shí)距家的路程多遠(yuǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com