【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是cm.
【答案】 ﹣6
【解析】解:如圖,
由題意知,∠AEC=90°,
∴E在以AC為直徑的⊙M的 上(不含點(diǎn)C、可含點(diǎn)N),
∴BE最短時,即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),
∵AB=13cm,AC=12cm,BC=5cm,
∴AC2+BC2=AB2 ,
∴∠ACB=90°,
作MF⊥AB于F,
∴∠AFM=∠ACB=90°,∠FAM=∠CAB,
∴△AMF∽△ABC,
∴ = ,即 = ,得MF= ,
∴AF= = ,
則BF=AB﹣AF= ,
∴BM= = ,
∵M(jìn)E=6,
∴BE長度的最小值BE′=BM﹣ME′= ﹣6,
故答案為: ﹣6.
由∠AEC=90°知E在以AC為直徑的⊙M的 上(不含點(diǎn)C、可含點(diǎn)N),從而得BE最短時,即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),作MF⊥AB于F,證△AMF∽△ABC,根據(jù)相似三角形的性質(zhì)得到MF,根據(jù)勾股定理得到AF,BF,BM,于是得到結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當(dāng)△AB′D為等腰三角形時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+ x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+ x+c上的一動點(diǎn),過點(diǎn)P作PE⊥x軸,垂足為E,交直線l于點(diǎn)F.
(1)試求該拋物線表達(dá)式;
(2)如圖(1),四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過點(diǎn)P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問當(dāng)P點(diǎn)橫坐標(biāo)為何值時,使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心,2為半徑的圓與x軸交于點(diǎn)A、B,已知拋物線y= x2+bx+c過點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象.
(2)點(diǎn)P為此拋物線對稱軸上一個動點(diǎn),求PC﹣PA的最大值.
(3)CE是過點(diǎn)C的⊙M的切線,E是切點(diǎn),CE交OA于點(diǎn)D,求OE所在直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表: 請結(jié)合圖表完成下列各題:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
(1)表中a的值為;
(2)頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線上有A、B兩個港口,甲貨船從A港沿北偏東60°的方向以4海里/小時的速度出發(fā),同時乙貨船從B港沿西北方向出發(fā),2小時后相遇在點(diǎn)P處,問乙貨船每小時航行海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,底面積為30cm2的空圓柱容器內(nèi)水平放置著由兩個實(shí)心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②.
(1)求圓柱形容器的高和勻速注水的水流速度;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱體的高和底面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個性化學(xué)習(xí)需求,某校就“學(xué)生對知識拓展,體育特長、藝術(shù)特長和實(shí)踐活動四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)扇形統(tǒng)計(jì)圖中m的值為 , n的值為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在選擇B類的學(xué)生中,甲、乙、丙三人在乒乓球項(xiàng)目表現(xiàn)突出,現(xiàn)決定從這三名同學(xué)中任選兩名參加市里組織的乒乓球比賽,選中甲同學(xué)的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com