某教研機(jī)構(gòu)為了了解在校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行了調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計(jì)表,請根據(jù)圖表中的信息解答下列問題:
某校初中生閱讀數(shù)學(xué)教科書情況統(tǒng)計(jì)圖表
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補(bǔ)全統(tǒng)計(jì)圖;
(2)若該校共有初中生2300名,請估計(jì)該!安恢匾曢喿x數(shù)學(xué)教科書”的初中人數(shù);
(3)①根據(jù)上面的統(tǒng)計(jì)結(jié)果,談?wù)勀銓υ撔3踔猩喿x數(shù)學(xué)教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學(xué)教科書的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?
解:(1)由題意可得出:樣本容量為:57÷0.38=150(人),
∴a=150×0.3=45,
b=150﹣57﹣45﹣9=39,
c=39÷150=0.26,
如圖所示:
(2)若該校共有初中生2300名,
該!安恢匾曢喿x數(shù)學(xué)教科書”的初中人數(shù)約為:2300×0.26=598(人);
(3)①根據(jù)以上所求可得出:只有30%的學(xué)生重視閱讀數(shù)學(xué)教科書,有32%的學(xué)生不重視閱讀數(shù)學(xué)教科書或說不清楚,可以看出大部分學(xué)生忽略了閱讀數(shù)學(xué)教科書,同學(xué)們應(yīng)重視閱讀數(shù)學(xué)教科書,從而獲取更多的數(shù)學(xué)課外知識和對相關(guān)習(xí)題、定理的深層次理解與認(rèn)識.
②如果要了解全省初中生閱讀數(shù)學(xué)教科書的情況,應(yīng)隨機(jī)抽取不同的學(xué)校以及不同的年級進(jìn)行抽樣,進(jìn)而分析.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無論k取何實(shí)數(shù)值,拋物線總與x軸有兩個不同的交點(diǎn);
(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若α,β是方程x2﹣2x﹣3=0的兩個實(shí)數(shù)根,則α2+β2的值為( 。
| A. | 10 | B. | 9 | C. | 7 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在Rt△ABC中,∠A=90°,有一個銳角為60°,BC=6.若點(diǎn)P在直線AC上(不與點(diǎn)A,C重合),且∠ABP=30°,則CP的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,菱形ABCD中,對角線AC,BD相交于點(diǎn)O,且AC=6cm,BD=8cm,動點(diǎn)P,Q分別從點(diǎn)B,D同時(shí)出發(fā),運(yùn)動速度均為1cm/s,點(diǎn)P沿B→C→D運(yùn)動,到點(diǎn)D停止,點(diǎn)Q沿D→O→B運(yùn)動,到點(diǎn)O停止1s后繼續(xù)運(yùn)動,到B停止,連接AP,AQ,PQ.設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動時(shí)間為x(s).
(1)填空:AB= 5 cm,AB與CD之間的距離為 cm;
(2)當(dāng)4≤x≤10時(shí),求y與x之間的函數(shù)解析式;
(3)直接寫出在整個運(yùn)動過程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是半圓O的直徑,C為半圓上一點(diǎn),N是線段BC上一點(diǎn)(不與B﹑C重合),過N作AB的垂線交AB于M,交AC的延長線于E,過C點(diǎn)作半圓O的切線交EM于F,若NC∶CF=3∶2,則 sinB=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com