精英家教網 > 初中數學 > 題目詳情

【題目】某商品經銷店欲購進兩種紀念品,用160元購進的種紀念品與用240元購進的種紀念品的數量相同,每件種紀念品的進價比種紀念品的進價貴10元.

1)求兩種紀念品每件的進價分別為多少元?

2)若該商店種紀念品每件售價24元,種紀念品每件售價35元,這兩種紀念品共購進1000件,這兩種紀念品全部售出后總獲利不低于4900元,問種紀念品最多購進多少件?

【答案】1紀念品每件進價20元;紀念品每件進價30元;(2)最多購進紀念品100件.

【解析】

1)設A種紀念品的進價為x元,則B種紀念品的進價為元,根據題意列出分式方程,然后解方程并檢驗即可得出答案;

2)設種紀念品最多購進a件,根據“兩種紀念品全部售出后總獲利不低于4900元”列出不等式,解不等式即可.

1)設A種紀念品的進價為x元,則B種紀念品的進價為元,根據題意有

解得,

經檢驗,是原分式方程的解,

,

A種紀念品的進價為20元,則B種紀念品的進價為元;

2)設A種紀念品最多購進a件,根據題意有

解得 ,

A種紀念品最多購進100件.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBCBC18,DBDC15,點EF分別在線段BD、CD上,DEDF5AE的延長線交邊BC于點GAFBD于點N、其延長線交BC的延長線于點H

1)求證:BGCH;

2)設ADx,ADN的面積為y,求y關于x的函數解析式,并寫出它的定義域;

3)聯結FG,當HFGADN相似時,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某景區(qū)檢票口有A、BC、D4個檢票通道.甲、乙兩人到該景區(qū)游玩,兩人分別從4個檢票通道中隨機選擇一個檢票.

1)甲選擇A檢票通道的概率是 ;

2)求甲乙兩人選擇的檢票通道恰好相同的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,若拋物線軸相交于兩點,與軸相交于點,直線經過點,

1)求拋物線的解析式;

2)點是直線下方拋物線上一動點,過點軸于點,交于點,連接

①線段是否有最大值?如果有,求出最大值;如果沒有,請說明理由;

②在點運動的過程中,是否存在點,恰好使是以為腰的等腰三角形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩個工程隊同時開始維修某一段路面,一段時間后,甲隊被調往別處,乙隊獨自完成了剩余的維修任務.已知乙隊每小時維修路面的長度保持不變,甲隊每小時維修路面30米.甲、乙兩隊在此路段維修路面的總長度(米)與維修時間(時)之間的函數圖象如圖所示,下列說法中:

1)甲隊調離時,甲、乙兩隊已維修路面的總長度為150米;

2)乙隊每小時比甲隊多維修20米;

3)乙一共工作2小時;

4

正確的有( 。﹤.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點E,DHAE于點H,連接BH并延長交CD于點F,連接DEBF于點O,下列結論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(10),點B的坐標為(0,4),已知點Em0)是線段DO上的動點,過點EPE⊥x軸交拋物線于點P,交BC于點G,交BD于點H

1)求該拋物線的解析式;

2)當點P在直線BC上方時,請用含m的代數式表示PG的長度;

3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果店3月份購進甲種水果50千克、乙種水果80千克,共花費1700元,其中甲種水果以15/千克,乙種水果以20/千克全部售出;4月份又以同樣的價格購進甲種水果60千克、乙種水果40千克,共花費1200元,由于市場不景氣,4月份兩種水果均以3月份售價的8折全部售出.

1)求甲、乙兩種水果的進價每千克分別是多少元?

2)請計算該水果店3月和4月甲、乙兩種水果總贏利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB12,AD15,ECD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處,點P是線段CB延長線上的動點,連接PA,若△PAF是等腰三角形,則PB的長為____

查看答案和解析>>

同步練習冊答案