【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點,且AM平分∠BAD,DM平分∠ADC.
(1)求證:AM⊥DM;
(2)若BC=8,求點M到AD的距離.
【答案】(1)證明見解析(2)4
【解析】
(1)根據平行線的性質得到∠BAD+∠ADC=180°,根據角平分線的定義得到∠MAD+∠ADM=90°,根據垂直的定義得到答案;
(2)作MN⊥AD,根據角平分線的性質得到BM=MN,MN=CM,即.
(1)∵AB∥CD,
∴∠BAD+∠ADC=180°,
∵AM平分∠BAD,DM平分∠ADC,
∴2∠MAD+2∠ADM=180°,
∴∠MAD+∠ADM=90°,
∴∠AMD=90°,
即AM⊥DM;
(2)過M作MN⊥AD于點N,
∵AB∥CD,∠B=90°,
∴∠C=90°,即BM⊥AB,MC⊥DC,
又∵AM,DM分別平分∠BAD,∠ADC,BC=8,
∴BM=MN,MN=MC,
∴,
∴M到AD的距離為4.
科目:初中數學 來源: 題型:
【題目】某部隊將在指定山區(qū)進行軍事演習,為了使道路便于部隊重型車輛通過,部隊工兵連接到搶修一段長3600米道路的任務,按原計劃完成總任務的后,為了讓道路盡快投入使用,工兵連將工作效率提高了50%,一共用了10小時完成任務.
(1)按原計劃完成總任務的時,已搶修道路 米;
(2)求原計劃每小時搶修道路多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A,點B是數軸上原點O兩側的兩點,其中點A在負半軸上,且滿足AB=12,OB=2OA.
(1)點A,B在數軸上對應的數分別為 和 ;
(2)點A,B同時分別以每秒2個單位長度和每秒4個單位長度的速度向左運動.
①經過幾秒后,OA=3OB;
②點A,B在運動的同時,點P以每秒2個單位長度的速度從原點向右運動,經過幾秒后,點A,B,P中的某一點成為其余兩點所連線段的中點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。
A. 14cm B. 17cm C. 20cm D. 23cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y= (x+2)(x﹣4)(k為常數,且k>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經過點B的直線y=﹣ x+b與拋物線的另一交點為D.
(1)若點D的橫坐標為﹣5,求拋物線的函數表達式;
(2)若在第一象限內的拋物線上有點P,使得以A,B,P為頂點的三角形與△ABC相似,求k的值;
(3)在(1)的條件下,設F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當點F的坐標是多少時,點M在整個運動過程中用時最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)試說明:△ABC≌△FED;
(2)若圖形經過平移和旋轉后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數;
(3)將圖形繼續(xù)旋轉后得到圖3,此時D,B,F三點在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請你說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B,C的坐標分別為(1,0),(0,1),(-1,0).一個電動玩具從坐標原點O出發(fā),第一次跳躍到點P1,使得點P1與點O關于點A成中心對稱;第二次跳躍到點P2,使得點P2與點P1關于點B成中心對稱;第三次跳躍到點P3,使得點P3與點P2關于點C成中心對稱;第四次跳躍到點P4,使得點P4與點P3關于點A成中心對稱;第五次跳躍到點P5,使得點P5與點P4關于點B成中心對稱;…照此規(guī)律重復下去,則點P2105的坐標為_______________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com