【題目】根據(jù)市衛(wèi)生防疫部門的要求,游泳池必須定期換水后才能對外開放.在換水時需要經(jīng)“排水—清冼—灌水”的過程.某游泳館從早上7:00開始對游泳池進(jìn)行換水,已知該游泳池的排水速度是灌水速度的1.6倍,其中游泳池內(nèi)剩余的水量y(m3)與換水時間x(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:
(1)填空:該游泳池清洗需要 小時;
(2)求排水過程中的y(m3)與x(h)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若該游泳館在換水結(jié)束后30分鐘才能對外開放,試問游泳愛好者小明能否在中午12:40進(jìn)入該游泳館游泳?
【答案】(1)1.2;(2)排水過程中的y與x之間的函數(shù)關(guān)系式為:y=-800x+1200(0≤x≤1.5);(3)游泳愛好者小明能在中午12:40進(jìn)入該游泳館游泳.
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以解答本題;
(2)根據(jù)題意核函數(shù)圖象中的數(shù)據(jù)可以求得排水過程中的V(m3)與t(h)之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)根據(jù)題意可以求得下午幾點(diǎn)開放,然后與13:30比較大小即可解答本題.
(1)由題意可得,該游泳池清洗需要:2.7﹣1.5=1.2(小時),故答案為:1.2;
(2)設(shè)排水過程中的y(m3)與x(h)之間的函數(shù)關(guān)系式為:y=kx+b,由題知
,解得,∴排水過程中的y與x之間的函數(shù)關(guān)系式為:
y=-800x+1200(0≤x≤1.5);
(3)由題意可得,排水的速度為:1200÷1.5=800(m3/h),
∴灌水的速度為:800÷1.6=500(m3/h),∴灌水用的時間為:1200÷500=2.4h,
∴對外開放的時間為:7+2.7+2.4+=12.6<12,
∴游泳愛好者小明能在中午12:40進(jìn)入該游泳館游泳.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB=40cm.
(1)如圖①,點(diǎn)P沿線段AB自點(diǎn)A向點(diǎn)B以3厘米/秒運(yùn)動,同時點(diǎn)Q線段BA自B點(diǎn)向點(diǎn)A以5厘米/秒運(yùn)動,問經(jīng)過幾秒后P、Q相遇?
(2)幾秒鐘后,P、Q相距16厘米?
(3)如圖②,AO=PO=8厘米,∠POB=40°,點(diǎn)P繞點(diǎn)O以20度/秒的速度順時針旋轉(zhuǎn)一周停止,同時點(diǎn)Q沿直線BA自B點(diǎn)向點(diǎn)A運(yùn)動,假若P、Q兩點(diǎn)能相遇,求Q運(yùn)動的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A、B兩點(diǎn)在數(shù)軸上對應(yīng)的數(shù)分別為﹣12和4.
(1)直接寫出A、B兩點(diǎn)之間的距離;
(2)若在數(shù)軸上存在一點(diǎn)P,使得AP=PB,求點(diǎn)P表示的數(shù).
(3)如圖2,現(xiàn)有動點(diǎn)P、Q,若點(diǎn)P從點(diǎn)A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左運(yùn)動,當(dāng)點(diǎn)Q到達(dá)原點(diǎn)O后立即以每秒3個單位長度的速度沿數(shù)軸向右運(yùn)動,求:當(dāng)OP=4OQ時的運(yùn)動時間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=3x+3與x軸交于C點(diǎn),與y軸交于A點(diǎn),B點(diǎn)在x軸上,△OAB是等腰直角三角形.
(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)若直線CD∥AB交拋物線于D點(diǎn),求D點(diǎn)的坐標(biāo);
(3)若P點(diǎn)是拋物線上的動點(diǎn),且在第一象限,那么△PAB是否有最大面積?若有,求出此時P點(diǎn)的坐標(biāo)和△PAB的最大面積;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6 ,AF=4 ,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形紙片ABCD中,AB=12,BC=16.將矩形紙片ABCD折疊,使點(diǎn)B與點(diǎn)D重合,點(diǎn)A折疊至點(diǎn)E處,GH為折痕,連接BG.
(1)△DGH是等腰三角形嗎?請說明你的理由.
(2)求線段AG的長;
(3)求折痕GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)畫一個角等于已知角,是運(yùn)用了“全等三角形的對應(yīng)角相等”這一性質(zhì),其全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(diǎn)(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點(diǎn)的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com