【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①a﹣3b+2c>0;②3a﹣2b﹣c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣8.其中正確的結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
【答案】B
【解析】
根據(jù)二次函數(shù)的性質(zhì)一一判斷即可.
∵拋物線的開口向上,
∴a>0,
∵拋物線的頂點坐標(biāo)(﹣2,﹣9a),
∴﹣=﹣2,=﹣9a,
∴b=4a,c=﹣5a,
∴拋物線的解析式為y=ax2+4ax﹣5a,
∴a﹣3b+2c=a﹣12a﹣10a=﹣21a<0,所以①結(jié)論錯誤,
3a﹣2b﹣c=3a+4a+5a=12a>0,故②結(jié)論錯誤,
∵拋物線y=ax2+4ax﹣5a交x軸于(﹣5,0),(1,0),
∴若方程a(x+5)(x﹣1)=﹣1有兩個根x1和x2,且x1<x2,則﹣5<x1<x2<1,正確,故結(jié)論③正確,
若方程|ax2+bx+c|=1有四個根,設(shè)方程ax2+bx+c=1的兩根分別為x1,x2,
則=﹣2,可得x1+x2=﹣4,
設(shè)方程ax2+bx+c=1的兩根分別為x3,x4,則=﹣2,可得x3+x4=﹣4,
所以這四個根的和為﹣8,故結(jié)論④正確,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點D為BC的中點,點E在AC上,將△CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AC是對角線,AB=8cm,BC=6cm.點P從點A出發(fā),沿AC方向勻速運動,速度為2cm/s,同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s.過點P作PM⊥AD于點M,連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時,點Q在線段AC的中垂線上;
(2)寫出四邊形PQAM的面積為S(cm2)與時間t的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使S四邊形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,請說明理由;
(4)當(dāng)t為何值時,△APQ與△ADC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+b交x軸于點A,交y軸于點B(0,1),與反比例函數(shù)的圖象交于點C,C點的橫坐標(biāo)是﹣2.
(1)求反比例函數(shù)y1的解析式;
(2)設(shè)函數(shù)的圖象與的圖象關(guān)于y軸對稱,在的圖象上取一點D(D點的橫坐標(biāo)大于1),過D點作DE⊥x軸于點E,若四邊形OBDE的面積為10,求D點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點D、E、F、G分別為線段AB、OB、OC、AC的中點.
(1)求證:四邊形DEFG是平行四邊形;
(2)如圖2,若點M為EF的中點,BE:CF:DG=2:3:,求證:∠MOF=∠EFO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC.以C為圓心,CB的長為半徑作弧,交AB于點D.分別以B、D為圓心,大于BD的長為半徑作弧,兩弧交于點E.作射線CE交AB于點M.分別以A、C為圓心,CM、AM的長為半徑作弧,兩弧交于點N.連接AN、CN
(1)求證:AN⊥CN
(2)若AB=5,tanB=3,求四邊形AMCN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數(shù)圖象如圖所示,下列說法正確的有()個
①快車追上慢車需6小時
②慢車比快車早出發(fā)2小時
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時到達B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com