【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點

(1)求m的值及C點坐標;

(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由;

(3)P為拋物線上一點,它關(guān)于直線BC的對稱點為Q

①當四邊形PBQC為菱形時,求點P的坐標;

②點P的橫坐標為t(0t4),當t為何值時,四邊形PBQC的面積最大,請說明理由.

【答案】(1)m=4,C(0,4);(2)存在,M(2,6);(3)P(,)或P(,);當t=2時,S四邊形PBQC最大=16.

【解析】

試題分析:(1)用待定系數(shù)法求出拋物線解析式;

(2)先判斷出面積最大時,平移直線BC的直線和拋物線只有一個交點,從而求出點M坐標;

(3)①先判斷出四邊形PBQC時菱形時,點P是線段BC的垂直平分線,利用該特殊性建立方程求解;

②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.

試題解析:(1)將B(4,0)代入,解得,m=4,二次函數(shù)解析式為,令x=0,得y=4,C(0,4);

(2)存在,理由:B(4,0),C(0,4),直線BC解析式為y=﹣x+4,當直線BC向上平移b單位后和拋物線只有一個公共點時,MBC面積最大,,,∴△=16﹣4b=0,b=4,,M(2,6)

(3)①如圖,點P在拋物線上,設(shè)P(m,),當四邊形PBQC是菱形時,點P在線段BC的垂直平分線上,B(4,0),C(0,4),線段BC的垂直平分線的解析式為y=x,m=,m=,P(,)或P(,);

②如圖,設(shè)點P(t,),過點P作y軸的平行線l,過點C作l的垂線,點D在直線BC上,D(t,﹣t+4),PD=﹣(﹣t+4)=,BE+CF=4,S四邊形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD==,0t4,當t=2時,S四邊形PBQC最大=16

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)作圖發(fā)現(xiàn):

如圖1,已知,小涵同學以、為邊向外作等邊和等邊,連接.這時他發(fā)現(xiàn)的數(shù)量關(guān)系是

2)拓展探究:

如圖2,已知,小涵同學以為邊向外作正方形和正方形,連接,,試判斷之間的數(shù)量關(guān)系,并說明理由.

3)解決問題

如圖3,要測量池塘兩岸相對的兩點,的距離,已經(jīng)測得,米,,則 米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中, ,高、 相交于點, ,且 .

(1)求線段 的長;

(2)動點 從點 出發(fā),沿線段 以每秒 1 個單位長度的速度向終點 運動,動點 出發(fā)沿射線 以每秒 4 個單位長度的速度運動,兩點同時出發(fā),當點 到達 點時, 兩點同時停止運動.設(shè)點 的運動時間為 秒,的面積為 ,請用含 的式子表示 ,并直接寫出相應(yīng)的 的取值范圍;

(3)(2)的條件下,點 是直線上的一點且 .是否存在 值,使以點 為頂 點的三角形與以點 為頂點的三角形全等?若存在,請直接寫出符合條件的 ; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調(diào)查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.

請根據(jù)圖中信息解決下列問題:

(1)共有多少名同學參與問卷調(diào)查;

(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數(shù)約為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題:如圖中,,,邊上一點(不與點重合),連接,過點,并滿足,連接.則線段和線段的數(shù)量關(guān)系是_______,位置關(guān)系是_______

2)探索:如圖,當點為邊上一點(不與點,重合),均為等腰直角三角形,,,.試探索線段,,之間滿足的等量關(guān)系,并證明你的結(jié)論;

3)拓展:如圖,在四邊形中,,若,請直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一段路基的橫斷面是直角梯形,如圖1,已知原來坡面的坡角α的正弦值為0.6,現(xiàn)不改變土石方量,全部利用原有土石方進行坡面改造,使坡度變小,達到如右下圖2的技術(shù)要求.試求出改造后坡面的坡度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,ABC三個頂點的坐標分別是A(1,1),B (42),C(34)

1)畫出ABC關(guān)于y軸對稱的A1B1C1(要求:AA1,BB1,CC1相對應(yīng));

2)通過畫圖,在x軸上確定點Q,使得QAQB之和最小,畫出QAQB,并直接寫出點Q的坐標.點Q的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有(  )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊中,點邊上,點的延長線上,(如圖1

1)求證:;

2)點關(guān)于直線的對稱點為,連接

①依題意將圖2補全;

②證明:在點運動的過程中,始終有

查看答案和解析>>

同步練習冊答案