【題目】如圖,一架2.5米長(zhǎng)的梯子AB斜靠在豎直的墻AC上,這時(shí)B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點(diǎn)B將向左滑動(dòng)多少米?
【答案】點(diǎn)B將向左移動(dòng)0.8米.
【解析】
根據(jù)勾股定理即可求AC的長(zhǎng)度,根據(jù)AC=AA1+CA1即可求得CA1的長(zhǎng)度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB2的長(zhǎng)度,根據(jù)BB1=CB1-CB即可求得BB1的長(zhǎng)度.
解:在△ABC中,∠C=90°,
∴AC2+BC2=AB2,
即AC2+0.72=2.52,
∴AC=2.4.
在△A1B1C中,∠C=90°,
∴A1C2+B1C2=A1B12,
即(2.4–0.4)2+B1C 2=2.52,
∴B1C=1.5.
∴B1B=1.5–0.7=0.8,即點(diǎn)B將向左移動(dòng)0.8米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣、兩類(lèi)薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬(wàn)元.改造一所類(lèi)學(xué)校和兩所類(lèi)學(xué)校共需資金230萬(wàn)元;改造兩所類(lèi)學(xué)校和一所類(lèi)學(xué)校共需資金205萬(wàn)元.
(1)改造一所類(lèi)學(xué)校和一所類(lèi)學(xué)校所需的資金分別是多少萬(wàn)元?
(2)若該縣的類(lèi)學(xué)校不超過(guò)5所,則類(lèi)學(xué)校至少有多少所?
(3)我市計(jì)劃今年對(duì)該縣、兩類(lèi)學(xué)校共6所進(jìn)行改造,改造資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若今年國(guó)家財(cái)政撥付的改造資金不超過(guò)400萬(wàn)元;地方財(cái)政投入的改造資金不少于70萬(wàn)元,其中地方財(cái)政投入到、兩類(lèi)學(xué)校的改造資金分別為每所10萬(wàn)元和15萬(wàn)元.請(qǐng)你通過(guò)計(jì)算求出有幾種改造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD和四邊形OEFG都是正方形,點(diǎn)O是正方形ABCD兩對(duì)角線(xiàn)的交點(diǎn),已知AB=2,EF=3,正方形OEFG繞點(diǎn)O轉(zhuǎn)動(dòng),OE交BC上一點(diǎn)N,OG交CD上一點(diǎn)M.求四邊形OMCN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支援四川雅安地震災(zāi)區(qū),某市民政局組織募捐了240噸救災(zāi)物資,現(xiàn)準(zhǔn)備租用甲、乙兩種貨車(chē),將這批救災(zāi)物資一次性全部運(yùn)往災(zāi)區(qū),它們的載貨量和租金如下表:
甲種貨車(chē) | 乙種貨車(chē) | |
載貨量(噸/輛) | 45 | 30 |
租金(元/輛) | 400 | 300 |
如果計(jì)劃租用6輛貨車(chē),且租車(chē)的總費(fèi)用不超過(guò)2300元,求最省錢(qián)的租車(chē)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,D為AB上不與AB重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)D分別作DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F,則線(xiàn)段EF的最小值為( )
A. 3 B. 4 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解七年級(jí)學(xué)生體育測(cè)試成績(jī)情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)統(tǒng)計(jì)如下,其中右側(cè)扇形統(tǒng)計(jì)圖中的圓心角α為36°,根據(jù)圖表中提供的信息,回答下列問(wèn)題:
體育成績(jī)統(tǒng)計(jì)表 | ||
體育成績(jī)(分) | 人數(shù)(人) | 百分比(%) |
26 | 8 | 16 |
27 | 12 | 24 |
28 | 15 | |
29 | n | |
30 |
(1)求樣本容量及n的值;
(2)已知該校七年級(jí)共有500名學(xué)生,如果體育成績(jī)達(dá)28分以上為優(yōu)秀,請(qǐng)估計(jì)該校七年級(jí)學(xué)生體育成績(jī)達(dá)到優(yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.
下面有三個(gè)推斷:
①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;
③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),且在直線(xiàn)BC的上方.
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面推理過(guò)程:
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°,
∴AB∥ ( )
∴∠B=∠DCE( )
又∵∠B=∠D,
∴∠DCE=∠D( )
∴ ∥ ( )
∴∠E=∠DFE( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com