【題目】如圖,小明為了測量校園里旗桿的高度,將測角儀豎直放在距旗桿底部點(diǎn)的位置,在處測得旗桿頂端的仰角為,若測角儀的高度是,則旗桿的高度約為(精確到,參考數(shù)據(jù):,)(

A. 8.5B. 9C. 9.5D. 10

【答案】C

【解析】

DDEAB,根據(jù)矩形的性質(zhì)得出BC=DE=6m根據(jù)正切函數(shù)的定義,由AE=DEtan53°算出AE的長,根據(jù)AB=AE+BE=AE+CD算出答案.

DDEAB于點(diǎn)E,

∵在D處測得旗桿頂端A的仰角為53°

∴∠ADE=53°

BC=DE=6m,

AE=DEtan53°≈6×1.33≈7.98m

AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點(diǎn)分別為D、F,CD垂直于地面,FEAB于點(diǎn)E.點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CDEF的長度各是多少.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時,若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時,在拋物線上是否存在點(diǎn),使的面積為1?若存在,請求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點(diǎn),其中點(diǎn)坐標(biāo)為,與軸交于點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)如圖①,連接,點(diǎn)在拋物線上,且滿足.求點(diǎn)的坐標(biāo);

3)如圖②,點(diǎn)軸下方拋物線上任意一點(diǎn),點(diǎn)是拋物線對稱軸與軸的交點(diǎn),直線分別交拋物線的對稱軸于點(diǎn)、.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方法選擇

如圖①,四邊形的內(nèi)接四邊形,連接,,.求證:.

小穎認(rèn)為可用截長法證明:在上截取,連接

小軍認(rèn)為可用補(bǔ)短法證明:延長至點(diǎn),使得

請你選擇一種方法證明.

(2)類比探究

(探究1

如圖②,四邊形的內(nèi)接四邊形,連接,的直徑,.試用等式表示線段,之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(探究2

如圖③,四邊形的內(nèi)接四邊形,連接,.若的直徑,,則線段,之間的等量關(guān)系式是______

(3)拓展猜想

如圖④,四邊形的內(nèi)接四邊形,連接.若的直徑,,則線段,,之間的等量關(guān)系式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動點(diǎn)D從點(diǎn)A出發(fā),在AB邊上以每秒1個單位的速度向點(diǎn)B運(yùn)動,連結(jié)CD,作點(diǎn)A關(guān)于直線CD的對稱點(diǎn)E,設(shè)點(diǎn)D運(yùn)動時間為t(s).

(1)若△BDE是以BE為底的等腰三角形,求t的值;

(2)若△BDE為直角三角形,求t的值;

(3)當(dāng)S△BCE時,所有滿足條件的t的取值范圍 (所有數(shù)據(jù)請保留準(zhǔn)確值,參考數(shù)據(jù):tan15°=2﹣).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車,從入口處出發(fā),沿該公路開往草甸,途中停靠塔林(上下車時間忽略不計(jì)).第一班車上午8點(diǎn)發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車.小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒到班車發(fā)車時間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程(米)與時間(分)的函數(shù)關(guān)系如圖2所示.

1)求第一班車離入口處的路程(米)與時間(分)的函數(shù)表達(dá)式.

2)求第一班車從人口處到達(dá)塔林所蓄的時間.

3)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聘聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸相交于、兩點(diǎn),與軸交于點(diǎn),且tan.設(shè)拋物線的頂點(diǎn)為,對稱軸交軸于點(diǎn).

1)求拋物線的解析式;

2為拋物線的對稱軸上一點(diǎn),軸上一點(diǎn),且.

①當(dāng)點(diǎn)在線段(含端點(diǎn))上運(yùn)動時,求的變化范圍;

②當(dāng)取最大值時,求點(diǎn)到線段的距離;

③當(dāng)取最大值時,將線段向上平移個單位長度,使得線段與拋物線有兩個交點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案