【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車(chē),從入口處出發(fā),沿該公路開(kāi)往草甸,途中?克郑ㄉ舷萝(chē)時(shí)間忽略不計(jì)).第一班車(chē)上午8點(diǎn)發(fā)車(chē),以后每隔10分鐘有一班車(chē)從入口處發(fā)車(chē).小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒(méi)到班車(chē)發(fā)車(chē)時(shí)間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程(米)與時(shí)間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車(chē)離入口處的路程(米)與時(shí)間(分)的函數(shù)表達(dá)式.
(2)求第一班車(chē)從人口處到達(dá)塔林所蓄的時(shí)間.
(3)小聰在塔林游玩40分鐘后,想坐班車(chē)到草甸,則小聘聰最早能夠坐上第幾班車(chē)?如果他坐這班車(chē)到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車(chē)速度均相同,小聰步行速度不變)
【答案】(1).;(2)10分鐘;(3)第5班車(chē),7分鐘.
【解析】
(1)設(shè)y=kx+b,運(yùn)用待定系數(shù)法求解即可;
(2)把y=1500代入(1)的結(jié)論即可;
(3)設(shè)小聰坐上了第n班車(chē),30-25+10(n-1)≥40,解得n≥4.5,可得小聰坐上了第5班車(chē),再根據(jù)“路程、速度與時(shí)間的關(guān)系”解答即可.
(1)解:由題意得,可設(shè)函數(shù)表達(dá)式為:.
把,代入,得,
解得.
∴第一班車(chē)離入口處的路程(米)與時(shí)間(分)的函數(shù)表達(dá)式為.
(2)解:把代入,解得,
(分).
∴第一班車(chē)到塔林所需時(shí)間10分鐘.
(3)解:設(shè)小聰坐上第班車(chē).
,解得,
∴小聰最早坐上第5班車(chē).
等班車(chē)時(shí)間為5分鐘,
坐班車(chē)所需時(shí)間:(分),
∴步行所需時(shí)間:(分),
(分).
∴小聰坐班車(chē)去草甸比他游玩結(jié)束后立即步行到達(dá)草甸提早7分鐘
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù) 的圖象M經(jīng)過(guò)(,0),(2,)兩點(diǎn)且與軸的另一個(gè)交點(diǎn)為.
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn)(點(diǎn)G與線(xiàn)段的端點(diǎn)不重合),若△AGB∽△ABC,求點(diǎn)G的坐標(biāo);
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸為,點(diǎn)是拋物線(xiàn)上一動(dòng)點(diǎn),當(dāng)△ACD的面積為時(shí),點(diǎn)D關(guān)于的對(duì)稱(chēng)點(diǎn)為E,能否在拋物線(xiàn)和上分別找到點(diǎn)P、Q,使得以點(diǎn)D、E、P、Q為頂點(diǎn)的四邊形為平行四邊形. 若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在A的正東方向有一港口B.某巡邏艇從A沿著北偏東55°方向巡邏,到達(dá)C時(shí)接到命令,立刻從C沿南偏東60°方向以20海里/小時(shí)的速度航行,從C到B航行了3小時(shí).求A,B間的距離(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】歐幾里得在《幾何原本》中,記載了用圖解法解方程的方法,類(lèi)似地可以用折紙的方法求方程的一個(gè)正根。下面是甲、乙兩位同學(xué)的做法:甲:如圖1,裁一張邊長(zhǎng)為1的正方形的紙片,先折出的中點(diǎn),再折出線(xiàn)段,然后通過(guò)折疊使落在線(xiàn)段上,折出點(diǎn)的新位置,因而,類(lèi)似地,在上折出點(diǎn)使。此時(shí),的長(zhǎng)度可以用來(lái)表示方程的一個(gè)正根;乙:如圖2,裁一張邊長(zhǎng)為1的正方形的紙片,先折出的中點(diǎn),再折出線(xiàn)段N,然后通過(guò)沿線(xiàn)段折疊使落在線(xiàn)段上,折出點(diǎn)的新位置,因而。此時(shí),的長(zhǎng)度可以用來(lái)表示方程的一個(gè)正根;甲、乙兩人的做法和結(jié)果( )。
A.甲對(duì),乙錯(cuò)B.乙對(duì),甲錯(cuò)C.甲乙都對(duì)D.甲乙都錯(cuò)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面內(nèi)拋物線(xiàn)和一點(diǎn)過(guò)點(diǎn)作直線(xiàn),若直線(xiàn)與該拋物線(xiàn)有且只有一個(gè)交點(diǎn),則這樣的直線(xiàn)的條數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-1,0)、B(4,0),與y軸交于點(diǎn)C(0,4).
(1)求拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)P為直線(xiàn)BC上方拋物線(xiàn)的一點(diǎn),分別連接PB、PC,若直線(xiàn)BC恰好平分四邊形COBP的面積,求P點(diǎn)坐標(biāo);
(3)在(2)的條件下,是否在該拋物線(xiàn)上存在一點(diǎn)Q,該拋物線(xiàn)對(duì)稱(chēng)軸上存在一點(diǎn)N,使得以A、P、Q、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求出Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線(xiàn)的表達(dá)式;
(2)如圖1,P為線(xiàn)段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線(xiàn),交拋物線(xiàn)于點(diǎn)D,當(dāng)△BCD的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線(xiàn)頂點(diǎn)為E,EF⊥x軸于F點(diǎn),N是線(xiàn)段EF上一動(dòng)點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),若∠MNC=90°,直接寫(xiě)出實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在的直徑的延長(zhǎng)線(xiàn)上,點(diǎn)在上,且AC=CD,∠ACD=120°.
(1)求證:是的切線(xiàn);
(2)若的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com