【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學習小組經(jīng)過合作交流,給出了下面的解題思路:
作AD⊥BC于D,設BD=x,用含x的代數(shù)式表示CD→根據(jù)勾股定理,利用AD作為“橋梁”,列出方程求出x→再求出AD的長,從而計算三角形的面積.請你按照他們的解題思路完成解答過程.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 _____________ ,(證明你的結(jié)論. )
(2)當四邊形ABCD的對角線滿足 __________條件時,四邊形EFGH是矩形(不用證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形 ABCD 繞點 A 按逆時針方向旋轉(zhuǎn)到正方形AB ' C ' D ' ,旋轉(zhuǎn)角為 ( 0<< 180 ) ,連接 B ' D 、 C ' D ,若 B ' D C ' D ,則 =____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)按要求將下列幾何體進行分類,并將分類后幾何體的名稱寫在對應的括號內(nèi).
柱體:{ …}
錐體:{ …}
(2)6個完全相同的正方體組成如圖所示的幾何體,畫出該幾何體從正面,左面看到的形狀圖(用陰影畫在所給的方格中)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)填寫下表,并觀察下列兩個代數(shù)式的值的變化情況。
(2)隨著n的值逐漸變大,兩個代數(shù)式的值如何變化?
(3)估計一下,哪個代數(shù)式的值先超過100?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品--圓規(guī).我們不妨把這種圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?請解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BPC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下問題:
①如圖2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接寫出∠BPC與∠A之間存在的等量關(guān)系為: .
遷移運用:如圖3:在△ABC中,∠A=80°,點O是∠ABC,∠ACB角平分線的交點,點P是∠BOC,∠OCB角平分線的交點,若∠OPC=100°,則∠ACB的度數(shù) .
②如圖4:若D點是△ABC內(nèi)任意一點,BP平分∠ABD,CP平分∠ACD.直接寫出∠BDC、∠BPC、∠A之間存在的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,E為對角線AC上的一個動點,連結(jié)DE并延長交射線AB于點F,連結(jié)BE.
(1)求證:∠AFD=∠EBC;
(2)若∠DAB=90°,當△BEF為等腰三角形時,求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家小型放映廳盈利額y(元)與售票數(shù)x(張)之間的關(guān)系如圖,保險部門規(guī)定:觀眾超過150人,要繳納保險費50元,試根據(jù)圖像回答問題:
(1)該放映廳有 個座位,該放映廳演出一場電影所需各項成本總和是 元;每張票的售價是 元;
(2)當售票數(shù)x為 時,不賠不賺:售票數(shù)x為 時,賠本;要獲得最大利潤150元,售票數(shù)x應為 張.
(3)當售票數(shù)x是多少張時,所得的利潤和賣出150張時的利潤相等(列方程解答)?當售票數(shù)滿足什么條件時,此時利潤比x=150張時多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com