【題目】如圖,△ABC中,AB=,AC=5,tanA=2,D是BC中點(diǎn),點(diǎn)P是AC上一個(gè)動(dòng)點(diǎn),將△BPD沿PD折疊,折疊后的三角形與△PBC的重合部分面積恰好等于△BPD面積的一半,則AP的長(zhǎng)為______.
【答案】2或5﹣
【解析】分兩種情況:
①當(dāng)點(diǎn)B′在AC的下方時(shí),如圖1,
∵D是BC中點(diǎn),∴S△BPD=S△PDC,
∵S△PDF=S△BPD,∴S△PDF=S△PDC,∴F是PC的中點(diǎn),∴DF是△BPC的中位線,∴DF∥BP,
∴∠BPD=∠PDF,
由折疊得:∠BPD=∠B′PD,∴∠B′PD=∠PDF,∴PB′=B′D,即PB=BD,
過B作BE⊥AC于E,Rt△ABE中,tan∠A==2,
∵AB=,∴AE=1,BE=2,∴EC=5﹣1=4,
由勾股定理得:BC===2,
∵D為BC的中點(diǎn),∴BD=,∴PB=BD=,
在Rt△BPE中,PE=1,∴AP=AE+PE=1=1=2;
②當(dāng)點(diǎn)B'在AC的上方時(shí),如圖2,連接B′C,
同理得:F是DC的中點(diǎn),F(xiàn)是PB′的中點(diǎn),∴DF=FC,PF=FB′,
∴四邊形DPCB′是平行四邊形,∴PC=B′D=BD=,∴AP=5﹣,
綜上所述,AP的長(zhǎng)為2或5﹣;
故答案為:2或5﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要了解全校學(xué)生的課外作業(yè)負(fù)擔(dān)情況,你認(rèn)為以下抽樣方法中比較合理的是( )
A.調(diào)查九年級(jí)全體學(xué)生
B.調(diào)查七、八、九年級(jí)各30名學(xué)生
C.調(diào)查全體女生
D.調(diào)查全體男生
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,對(duì)角線AC上有一點(diǎn)P,連接BP、DP,過點(diǎn)P作PE⊥PB交CD于點(diǎn)E,連接BE.
(1)求證:BP=EP;
(2)若CE=3,BE=6,求∠CPE的度數(shù);
(3)探究AP、PC、BE之間的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點(diǎn),則不等式-2<kx+b<1的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2+bx+3經(jīng)過點(diǎn)A(3,0),G(﹣1,0)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)M時(shí)拋物線在第一象限圖象上的一點(diǎn),求△ABM面積的最大值;
(3)拋物線的對(duì)稱軸交x軸于點(diǎn)P,過點(diǎn)E(0, )作x軸的平行線,交AB于點(diǎn)F,是否存在著點(diǎn)Q,使得△FEQ∽△BEP?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
()請(qǐng)直接寫出袋子中白球的個(gè)數(shù).
()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com