【題目】(2016浙江省麗水市)如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD,BC的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求的長(zhǎng).
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】試題(1)連接OD,BD,根據(jù)圓周角定理得到∠ABO=90°,根據(jù)等腰三角形的性質(zhì)得到∠ABD=∠ADB,∠DBO=∠BDO,根據(jù)等式的性質(zhì)得到∠ADO=∠ABO=90°,根據(jù)切線的判定定理即可得到即可;
(2)由AD是半圓O的切線得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根據(jù)圓周角定理得到∠ODC+∠BDO=90°,等量代換得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到結(jié)論;
(3)根據(jù)已知條件得到∠DOC=2∠CDE=54°,根據(jù)平角的定義得到∠BOD=180°﹣54°=126°,然后由弧長(zhǎng)的公式即可計(jì)算出結(jié)果.
試題解析:(1)證明:連接OD,BD,∵AB是⊙O的直徑,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圓O的切線;
(2)證明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圓O的切線,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直徑,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;
(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的長(zhǎng)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】碼頭工人每天往一艘輪船上裝載貨物,裝載速度y(噸/天)與裝完貨物所需時(shí)間x(天)之間的函數(shù)關(guān)系如圖.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,裝載完畢恰好用了8天時(shí)間,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在AB延長(zhǎng)線上,連接AD.下列結(jié)論一定正確的是()
A. AD∥BC B. ∠CBE=∠C C. ∠ABD=∠E D. AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)某班同學(xué)在慶祝2015年元旦晚會(huì)上進(jìn)行抽獎(jiǎng)活動(dòng).在一個(gè)不透明的口
袋中有三個(gè)完全相同的小球,把它們分別標(biāo)號(hào)1、2、3.隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回?fù)u勻,再從中隨
機(jī)摸出一個(gè)小球記下標(biāo)號(hào).
(1)請(qǐng)用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標(biāo)號(hào)的所有結(jié)果;
(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號(hào)相同時(shí)中獎(jiǎng),求中獎(jiǎng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中, , , , , ,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線段 的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn) C出發(fā),在線段 上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn) 運(yùn)動(dòng);點(diǎn)P, 分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn) 運(yùn)動(dòng)到點(diǎn) 時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒).
(1)當(dāng) 時(shí),求 的面積;
(2)若四邊形為平行四邊形,求運(yùn)動(dòng)時(shí)間 .
(3)當(dāng) 為何值時(shí),以 B、P、Q為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,對(duì)角線交于點(diǎn),并且,點(diǎn)是邊上一動(dòng)點(diǎn),延長(zhǎng)交于點(diǎn),當(dāng)點(diǎn)從點(diǎn)向點(diǎn)移動(dòng)過程中(點(diǎn)與點(diǎn),不重合),則四邊形的變化是( )
A. 平行四邊形→菱形→平行四邊形→矩形→平行四邊形
B. 平行四邊形→矩形→平行四邊形→菱形→平行四邊形
C. 平行四邊形→矩形→平行四邊形→正方形→平行四邊形
D. 平行四邊形→矩形→菱形→正方形→平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點(diǎn)Q從點(diǎn)A開始沿AB邊以1 cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)P從點(diǎn)B開始沿BC邊以2 cm/s的速度向點(diǎn)C移動(dòng),如果點(diǎn)Q,P分別從A,B兩點(diǎn)同時(shí)出發(fā),當(dāng)一動(dòng)點(diǎn)運(yùn)動(dòng)到終點(diǎn),另一動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).
(1)幾秒后,△PBQ的面積等于4 cm2?
(2)幾秒后,PQ的長(zhǎng)度等于2 cm?
(3)在(1)中,△PBQ的面積能否等于7 cm2?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘隔開的兩棵樹A,B之間的距離,他們?cè)O(shè)計(jì)了如圖所示的測(cè)量方案:從樹A沿著垂直于AB的方向走到點(diǎn)E處,再從點(diǎn)E沿著垂直于AE的方向走到點(diǎn)F處,C為AE上一點(diǎn),其中三位同學(xué)分別測(cè)得三組數(shù)據(jù):①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測(cè)數(shù)據(jù)求得A,B兩樹之間的距離的有________組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com