【題目】如圖,把矩形紙片ABCD沿EF翻折,點A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長是(
A.1+3
B.3+
C.4+
D.5+

【答案】D
【解析】解:如圖,
過點E作EG⊥AD,
∴∠AGE=∠FGE=90°
∵矩形紙片ABCD,
∴∠A=∠B=∠AGE=90°,
∴四邊形ABEG是矩形,
∴BE=AG,EG=AB=
在Rt△EFG中,∠EFG=60°,EG=
∴FG=1,EF=2,
由折疊有,A'F=AF,A'B'=AB= ,BE=B'E,∠A'FE=∠AFE=60°,
∵BC∥AD,
∴∠A'EF=∠AFE=60°,
∴△A'EF是等邊三角形,
∴A'F=EF=2,
∴AF=A'F=2,
∴BE=AG=AF﹣FG=2﹣1=1
∴B'E=1
∴四邊形A′B′EF的周長是A'B'+B'E+EF+A'F= +1+2+2=5+
故選D.
【考點精析】本題主要考查了矩形的性質和翻折變換(折疊問題)的相關知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a>0)的頂點為P,其圖像與x軸有兩個交點A(﹣m,0),B(1,0),交y軸于點C(0,﹣3am+6a),以下說法:
①m=3;
②當∠APB=120°時,a= ;
③當∠APB=120°時,拋物線上存在點M(M與P不重合),使得△ABM是頂角為120°的等腰三角形;
④拋物線上存在點N,當△ABN為直角三角形時,有a≥
正確的是( )
A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究規(guī)律:我們有可以直接應用的結論:若兩條直線平行,那么在一條直線上任取一點,無論這點在直線的什么位置,這點到另一條直線的距離均相等.例如:如圖1,兩直線,兩點,上,,則.

如圖2,已知直線,,為直線上的兩點,.為直線上的兩點.

(1)請寫出圖中面積相等的各對三角形: .

(2)如果,,為三個定點,點上移動,那么無論點移動到任何位置,總有: 的面積相等;理由是: .

解決問題:

如圖3,五邊形是張大爺十年前承包的一塊土地的示意圖,經(jīng)過多年開墾荒地,現(xiàn)已變成如圖4所示的形狀,但承包土地與開墾荒地的分界小路(圖4中折線)還保留著,張大爺想過點修一條直路,直路修好后,要保持直路左邊的土地面積與承包時的一樣多.請你用以上的幾何知識,按張大爺?shù)囊笤O計出修路方案.(不計分界小路與直路的占地面積)

(1)寫出設計方案,并在圖4中畫出相應的圖形;

(2)說明方案設計理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(a23,正確結果是( )

A.a5B.a6

C.a8D.a9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校組織學生到富陽春游,需要乘船到達目的地,有大小兩種船,705班共有學生51人,如果租用大船4艘,小船1艘,則有3位同學沒有座位;如果租用大船3艘,小船3艘,則有3個座位空余。

(1)問大小船每艘各坐幾人?

(2)如果大船收費標準為30元/艘,小船收費標準為25元/艘,請直接寫出你的設計方案使得租船費用最低,并計算最低費用。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,A=36°,AB的中垂線DEACD,交ABE,下述結論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)BDC的周長等于AB+BC;(4)DAC中點.其中正確的命題序號是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校百變魔方社團準備購買,兩種魔方.已知購買2個種魔方和6個種魔方共需130元,購買3個種魔方和4個種魔方所需款數(shù)相同.

(1)求這兩種魔方的單價;

(2)結合社員們的需求,社團決定購買兩種魔方共100個(其中種魔方不超過50個).某商店有兩種優(yōu)惠活動,如圖所示.

請根據(jù)以上信息,說明選擇哪種優(yōu)惠活動購買魔方更實惠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),把△ABC平移之后得到△A′B′C′,并且C的對應點C′的坐標為(4,1).

(1)分別寫出A′、B′兩點的坐標;

(2)作出△ABC平移之后的圖形△A′B′C′;

(3)求△A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.

查看答案和解析>>

同步練習冊答案