【題目】如圖1,已知正方形ABCD,E是線段BC上一點,N是線段BC延長線上一點,以AE為邊在直線BC的上方作正方形AEFG

1)連接GD,求證;

2)連接FC,求的值;

3)如圖2,將圖1中正方形ABCD改為矩形ABCD,,E是線段BC上一動點(不含端點B,C),以AE為邊在直線BC的上方作矩形AEFG,使頂點G恰好落在射線CD上.當點EBC運動時,判斷的值是否為定值?若是,求出該定值;若不是,請說明理由.

1 2

【答案】1)見解析;(2;(3)是定值,

【解析】

1)證明,問題得證;

2)過F,垂足為M,證明,得到,求出;

3)過F,垂足為M,證明,,設,得到,求得,問題得解.

1)∵正方形ABCD和正方形AEFG

,,

2)過F,垂足為M,則有

,

,

中,∴

3)過F,垂足為M,則有,

同理可證:

,

,則,

,

,即

的值為定值

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,RtABC中:C90°,AB6,在AB上取點O,以O為圓心,以OB為半徑作圓,與AC相切于點D,并分別與AB,BC相交于點E,F(異于點B).

1)求證:BD平分ABC;

2)若點E恰好是AO的中點,求弧BF的長;

3)若CF的長為1,求O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC和正方形DEFG按如圖所示擺放,其中 DE兩點分別在AB,BC上,且BD=DE.若AB=12,DE=4,則△EFC的面積為(

A.4B.8C.12D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出):有同樣大小正方形256個,拼成如圖1所示的的一個大的正方形.請問如果用一條直線穿過這個大正方形的話,最多可以穿過多少個小正方形?

(問題探究):我們先考慮以下簡單的情況:一條直線穿越一個正方形的情況.(如圖2

從圖中我們可以看出,當一條直線穿過一個小正方形時,這條直線最多與正方形上、下、左、右四條邊中的兩個邊相交,所以當一條直線穿過一個小正方形時,這條直線會與其中某兩條邊產(chǎn)生兩個交點,并且以兩個交點為頂點的線段會全部落在小正方形內(nèi).

這就啟發(fā)我們:為了求出直線最多穿過多少個小正方形,我們可以轉而去考慮當直線穿越由小正方形拼成的大正方形時最多會產(chǎn)生多少個交點.然后由交點數(shù)去確定有多少根小線段,進而通過線段的根數(shù)確定下正方形的個數(shù).

再讓我們來考慮正方形的情況(如圖3):

為了讓直線穿越更多的小正方形,我們不妨假設直線右上方至左下方穿過一個的正方形,我們從兩個方向來分析直線穿過正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線最多可穿過的大正方形中的六條線段,從而直線上會產(chǎn)生6個交點,這6個交點之間的5條線段,每條會落在一個不同的正方形內(nèi),因此直線最多能經(jīng)過5個小正方形.

(問題解決):

1)有同樣大小的小正方形16個,拼成如圖4所示的的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過_________個小正方形.

2)有同樣大小的小正方形256個,拼成的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過___________個小正方形.

3)如果用一條直線穿過的大正方形的話,最多可以穿過___________個小正方形.

(問題拓展):

4)如果用一條直線穿過的大長方形的話(如圖5),最多可以穿過個___________小正方形.

5)如果用一條直線穿過的大長方形的話(如圖6),最多可以穿過___________個小正方形.

6)如果用一條直線穿過的大長方形的話,最多可以穿過________個小正方形.

(類比探究):

由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個面,類比上面問題解決的方法解決如下問題:

7)如圖7有同樣大小的小正方體8個,拼成如圖所示的的一個大的正方體.如果用一條直線穿過這個大正方體的話,最多可以穿過___________個小正方體.

8)如果用一條直線穿過的大正方體的話,最多可以穿過_________個小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB的直徑,ACBC分別交于點E,D,.現(xiàn)給出以下四個結論:①;②;③;④.其中正確結論的序號是________.(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級某班準備選拔四名男生參加學校運動會接力比賽,進行了一次50米短跑測驗,成績?nèi)缦拢?/span>(單位:秒)6.9 7.0 7.1 7.2 7.0 7.4 7.3 7.5 7.0 7.4 7.3 6.8 7.0 7.1 7.3 6.9 7.1 7.2 7.4 6.9 7.0 7.2 7.0 7.2 7.6

班主任老師按0.2秒的組距分段,統(tǒng)計每個成績段出現(xiàn)的頻數(shù),填入頻數(shù)分布表,并繪制了頻數(shù)分布直方圖.

成績段(秒

頻數(shù)

4

9

7

1

頻率

0.36

0.28

0.16

0.04

1)求a、b值,并將頻數(shù)分布直方圖補充完整;

2)請計算這次短跑測驗的優(yōu)秀率(7.0秒及7.0秒以下);

3)成績前四名的A、B、CD同學組成九年級某班4×100米接力隊,其中成績最好的A同學安排在最后一棒(4),另外三位同學隨機編排在其余三個棒次,畫樹狀圖或列表說明B、C兩位同學為相鄰棒次的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標分別是24,則OAB的面積是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,RtABC中,∠ACB=90°,∠B=30°,AC=1,點PAB上一點,連接CP,將∠B沿CP折疊,使點B落在B'處.以下結論正確的有________

①當AB'AC時,AB'的長為

②當點P位于AB中點時,四邊形ACPB'為菱形;

③當∠B'PA=30°時,

④當CPAB時,APAB'BP=123


查看答案和解析>>

同步練習冊答案