【題目】如圖,正方形ABCD的邊長為5,點A的坐標(biāo)為(﹣4,0),點B在y軸上,若反比例函數(shù)y= (k≠0)的圖象過點C,則該反比例函數(shù)的表達(dá)式為(
A.y=
B.y=
C.y=
D.y=

【答案】A
【解析】解:如圖,過點C作CE⊥y軸于E,在正方形ABCD中,AB=BC,
∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠OAB+∠ABO=90°,
∴∠OAB=∠CBE,
∵點A的坐標(biāo)為(﹣4,0),
∴OA=4,
∵AB=5,
∴OB= =3,
在△ABO和△BCE中,
,
∴△ABO≌△BCE(AAS),
∴OA=BE=4,CE=OB=3,
∴OE=BE﹣OB=4﹣3=1,
∴點C的坐標(biāo)為(3,1),
∵反比例函數(shù)y= (k≠0)的圖象過點C,
∴k=xy=3×1=3,
∴反比例函數(shù)的表達(dá)式為y=
故選A.
【考點精析】利用正方形的性質(zhì)對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=

(1)求點B的坐標(biāo);
(2)求直線BN的解析式;
(3)將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關(guān)于運動的時間t(0<t≤13)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A坐標(biāo)為(2,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,點C為x軸上一動點,且在點A右側(cè),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,連接AD交BC于E.

(1)①直接回答:△OBC與△ABD全等嗎?
②試說明:無論點C如何移動,AD始終與OB平行;
(2)當(dāng)點C運動到使AC2=AEAD時,如圖2,經(jīng)過O、B、C三點的拋物線為y1 . 試問:y1上是否存在動點P,使△BEP為直角三角形且BE為直角邊?若存在,求出點P坐標(biāo);若不存在,說明理由;

(3)在(2)的條件下,將y1沿x軸翻折得y2 , 設(shè)y1與y2組成的圖形為M,函數(shù)y= x+ m的圖象l與M有公共點.試寫出:l與M的公共點為3個時,m的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉(zhuǎn)化為熱能,玻璃吸熱管與太陽光線垂直時,吸收太陽能的效果最好,假設(shè)某用戶要求根據(jù)本地區(qū)冬至正午時刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請完成以下計算:
如圖2,AB⊥BC,垂足為點B,EA⊥AB,垂足為點A,CD∥AB,CD=10cm,DE=120cm,F(xiàn)G⊥DE,垂足為點G.
(參考數(shù)據(jù):sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)

(1)若∠θ=37°50′,則AB的長約為cm;
(2)若FG=30cm,∠θ=60°,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)解不等式組:
(2)化簡:( ﹣a)÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=30°.

(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①)
[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側(cè)),那么點D還在經(jīng)過A,B,C三點的⊙O上嗎?
我們知道,如果點D不在經(jīng)過A,B,C三點的圓上,那么點D要么在⊙O外,要么在⊙O內(nèi),以下該同學(xué)的想法說明了點D不在⊙O外.請結(jié)合圖④證明點D也不在⊙O內(nèi).
【證】
[結(jié)論]綜上可得結(jié)論,如果∠ACB=∠ADB=α(點C,D在AB的同側(cè)),那么點D在經(jīng)過A,B,C三點的圓上,即:A、B、C、D四點共圓.
[應(yīng)用]利用上述結(jié)論解決問題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點A順時針旋轉(zhuǎn)α度(α為銳角)得△ADE,連接BE、CD,延長CD交BE于點F;
(1)用含α的代數(shù)式表示∠ACD的度數(shù);
(2)求證:點B、C、A、F四點共圓;
(3)求證:點F為BE的中點.

查看答案和解析>>

同步練習(xí)冊答案