【題目】如圖,⊙O的半徑r=25,四邊形ABCD內(nèi)接于圓⊙O,AC⊥BD于點H,P為CA延長線上的一點,且∠PDA=∠ABD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若tan∠ADB= ,PA= AH,求BD的長;
(3)在(2)的條件下,求四邊形ABCD的面積.
【答案】
(1)解:PD與圓O相切.
理由:如圖,連接DO并延長交圓于點E,連接AE,
∵DE是直徑,
∴∠DAE=90°,
∴∠AED+∠ADE=90°,
∵∠PDA=∠ABD=∠AED,
∴∠PDA+∠ADE=90°,
即PD⊥DO,
∴PD與圓O相切于點D
(2)解:∵tan∠ADB=
∴可設(shè)AH=3k,則DH=4k,
∵PA= AH,
∴PA=(4 ﹣3)k,
∴PH=4 k,
∴在Rt△PDH中,tan∠P= = ,
∴∠P=30°,∠PDH=60°,
∵PD⊥DO,
∴∠BDE=90°﹣∠PDH=30°,
連接BE,則∠DBE=90°,DE=2r=50,
∴BD=DEcos30°= ;
(3)解:由(2)知,BH= ﹣4k,
∴HC= ( ﹣4k),
又∵PD2=PA×PC,
∴(8k)2=(4 ﹣3)k×[4 k+ (25 ﹣4k)],
解得:k=4 ﹣3,
∴AC=3k+ (25 ﹣4k)=24 +7,
∴S四邊形ABCD= BDAC= ×25 ×(24 +7)=900+ .
【解析】(1)首先連接DO并延長交圓于點E,連接AE,由DE是直徑,可得∠DAE的度數(shù),又由∠PDA=∠ABD=∠E,可證得PD⊥DO,即可得PD與圓O相切于點D;(2)首先由tan∠ADB= ,可設(shè)AH=3k,則DH=4k,又由PA= AH,易求得∠P=30°,∠PDH=60°,連接BE,則∠DBE=90°,DE=2r=50,可得BD=DEcos30°= ;(3)由(2)易得HC= ( ﹣4k),又由PD2=PA×PC,可得方程:(8k)2=(4 ﹣3)k×[4 k+ (25 ﹣4k)],解此方程即可求得AC的長,繼而求得四邊形ABCD的面積.
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:
方案一:買一件甲種商品就贈送一件乙種商品;
方案二:按購買金額打八折付款.
某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2(元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說明怎樣購買最實惠.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為落實市教育局提出的“全員育人,創(chuàng)辦特色學!钡臅h精神,決心打造“書香校園”,計劃用不超過1900本科技類書籍和1620本人文類書籍,組建中、小型兩類圖書角共30個.已知組建一個中型圖書角需科技類書籍80本,人文類書籍50本;組建一個小型圖書角需科技類書籍30本,人文類書籍60本.符合題意的組建方案有( 。┓N.
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B,C為⊙O上相鄰的三個n等分點, ,點E在 上,EF為⊙O的直徑,將⊙O沿EF折疊,使點A與A′重合,點B與B′重合,連接EB′,EC,EA′.設(shè)EB′=b,EC=c,EA′=p.現(xiàn)探究b,c,p三者的數(shù)量關(guān)系:發(fā)現(xiàn)當n=3時,p=b+c.請繼續(xù)探究b,c,p三者的數(shù)量關(guān)系:當n=4時,p=;當n=12時,p= . (參考數(shù)據(jù):sin15°=cos75°= ,cos15°=sin75°= )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,點P從點A開始沿△ABC的邊做逆時針運動,且速度為每秒1cm;點Q從點B開始沿△ABC的邊做逆時針運動,且速度為每秒2cm,他們同時出發(fā),設(shè)運動時間為t秒.
(1)出發(fā)2秒后,P,Q兩點間的距離為多少cm?
(2)在運動過程中,△PQB能形成等腰三角形嗎?若能,請求出幾秒后第一次形成等腰三角形;若不能,則說明理由.
(3)出發(fā)幾秒后,線段PQ第一次把△ABC的周長分成相等兩部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點C坐標為_____________.(點C不與點A重合)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中陰影部分的面積為 ;
(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;
(3)若x+y=-6,xy=2.75,求x-y的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)閱讀下列材料:
(1)關(guān)于x的方程x2-3x+1=0(x≠0)方程兩邊同時乘以得: 即, ,
(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根據(jù)以上材料,解答下列問題:
(1)x2-4x+1=0(x≠0),則= ______ , = ______ , = ______ ;
(2)2x2-7x+2=0(x≠0),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com