【題目】如圖,點是以為直徑的上一點,過點作的切線交延長線于點,取中點,連接并延長交延長線于點.
(1)試判斷與的位置關系,并說明理由;
(2)若,,求.
【答案】(1)相切,理由見解析;(2)
【解析】
(1) 連接CD、EO,證明≌(SAS),得到,再根據(jù)DA是的切線,得到,即可證明;
(2)設設的半徑為r,根據(jù)勾股定理得到,再利用勾股定理求解AE的長度,利用計算即可得到答案;
解:(1) 與相切,理由如下:
如圖,連接CD、EO,
∵E為AD的中點,圓心O為直徑AB的中點,
∴EO是的中位線,
∴EO∥DB,
∴(兩直線平行,同位角相等),
(兩直線平行,內(nèi)錯角相等),
∴(等量替換),
在和中:
,
∴≌(SAS),
∴(全等三角形對應角相等),
又∵DA是的切線,
∴,
∴,
∴與相切;
(2)設的半徑為r,
∵,
∴,
∴ ,
即:,
解得: ,
∴AF=8+5+5=18,
設EA的長度為y,
由(1)知EA=EC=y(全等三角形對應邊相等),
根據(jù)勾股得到: ,
∴,
解得: ,
又∵EO∥DB,
∴ ,
∴ ;
科目:初中數(shù)學 來源: 題型:
【題目】某校用隨機抽樣的方法在九年級開展了“你是否喜歡網(wǎng)課”的調(diào)查,并將得到的數(shù)據(jù)整理成了以下統(tǒng)計圖(不完整).
(1)此次共調(diào)查了 名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該學校九年級共有300名學生,請你估計其中“非常喜歡”網(wǎng)課的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB⊥AD,點E是BC邊的中點,DA平分對角線BD與CD邊延長線的夾角,若BD=5,CD=7,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在三角形中,若有兩條中線互相垂直,則稱該三角形為中垂三角形.
(1)如圖(1),△ABC是中垂三角形,BD,AE分別是AC,BC邊上的中線,且BD⊥AE于點O,若∠BAE=45°,求證:△ABC是等腰三角形.
(2)如圖(2),在中垂三角形ABC中,AE,BD分別是邊BC,AC上的中線,且AE⊥BD于點O,猜想AB2,BC2,AC2之間的數(shù)量關系,并加以證明.
(3)如圖(3),四邊形ABCD是菱形,對角線AC,BD交于點O,點M,N分別是OA,OD的中點,連接BM,CN并延長,交于點E.
①求證:△BCE是中垂三角形;
②若,請直接寫出BE2+CE2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+(m﹣2)x+3(m+1)與x軸交于AB兩點(A在B左側(cè)),與y軸正半軸交于點C.
(1)當m≠﹣4時,說明這個二次函數(shù)的圖象與x軸必有兩個交點;
(2)若OAOB=6,求點C的坐標;
(3)在(2)的條件下,在x軸下方的拋物線上找一點P,使S△PAC的面積為15,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象過點,對稱軸為直線.有以下結(jié)論:
①;
②;
③若(,),(,)是拋物線上的兩點,當時,;
④點,是拋物線與軸的兩個交點,若在軸下方的拋物線上存在一點,使得⊥,則的取值范圍為;
⑤若方程的兩根為,,且<,則﹣2≤<<4.
其中正確結(jié)論的序號是( )
A.①②④B.①③④
C.①③⑤D.①②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是的直徑,D是的中點,于E,交CB于點過點D作BC的平行線DM,連接AC并延長與DM相交于點G.
求證:GD是的切線;
求證:;
若,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D在邊BC上,點E在線段AD上.
(1)若∠BAC=∠BED=2∠CED=α,
①若α=90°,AB=AC,過C作CF⊥AD于點F,求的值;
②若BD=3CD,求的值;
(2)AD為△ABC的角平分線,AE=ED=2,AC=5,tan∠BED=2,直接寫出BE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B,C均為格點.
(1)的面積等于;
(2)請用無刻度的直尺,在如圖所示的網(wǎng)格中畫出的角平分線BD,并在AB邊上畫出點P,使得,并簡要說明的角平分線BD及點P的位置是如何找到的(不要求證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com