精英家教網 > 初中數學 > 題目詳情

【題目】△ABC中,AB=AC,∠BAC=2∠DAE=2α

1)如圖1,若點D關于直線AE的對稱點為F,求證:△ADF∽△ABC

2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;

3)如圖3,若α=45°,點EBC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.

【答案】(1)見解析;(2)見解析;(3)DE2=BD2+CE2還能成立,理由見解析.

【解析】試題分析:(1)根據軸對稱的性質可得∠EAF=∠DAE,AD=AF,再求出∠BAC=∠DAF,然后根據兩邊對應成比例,夾角相等兩三角形相似證明;
(2)根據軸對稱的性質可得EF=DE,AF=AD,再求出∠BAD=∠CAF,然后利用“邊角邊”證明△ABD和△ACF全等,根據全等三角形對應邊相等可得CF=BD,全等三角形對應角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理證明即可;
(3)作點D關于AE的對稱點F,連接EF、CF,根據軸對稱的性質可得EF=DE,AF=AD,再根據同角的余角相等求出∠BAD=∠CAF,然后利用“邊角邊”證明△ABD和△ACF全等,根據全等三角形對應邊相等可得CF=BD,全等三角形對應角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理證明即可.

試題解析:

證明:(1)∵點D關于直線AE的對稱點為F,

∴∠EAF=∠DAE,AD=AF,

又∵∠BAC=2∠DAE,

∴∠BAC=∠DAF,

∵AB=AC,

=,

∴△ADF∽△ABC;

(2)∵點D關于直線AE的對稱點為F,

∴EF=DE,AF=AD,

∵α=45°,

∴∠BAD=90°﹣∠CAD,

∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,

∴∠BAD=∠CAF,

在△ABD和△ACF中,,

∴△ABD≌△ACF(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=2α,α=45°,

∴△ABC是等腰直角三角形,

∴∠B=∠ACB=45°,

∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,

所以,DE2=BD2+CE2;

(3)DE2=BD2+CE2還能成立.

理由如下:作點D關于AE的對稱點F,連接EF、CF,

由軸對稱的性質得,EF=DE,AF=AD,

∵α=45°,

∴∠BAD=90°﹣∠CAD,

∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,

∴∠BAD=∠CAF,

在△ABD和△ACF中,,

∴△ABD≌△ACF(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=2α,α=45°,

∴△ABC是等腰直角三角形,

∴∠B=∠ACB=45°,

∴∠ECF=∠ACB+∠ACF=45°+45°=90°,

在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,

所以,DE2=BD2+CE2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】a4·a2,(-a2)3,a12+a2,a2·a3中,計算結果為a6的有(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過點A(2,0)的兩條直線L1、L2分別交y軸于點B、C,其中點B在原點上方,點C在原點下方,已知AB=
(1)求點B的坐標;
(2)若△ABC的面積為4,請求出點C的坐標,并直接寫出直線L2所對應的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明同學在百度搜索引擎中輸入中國夢,我的夢,搜索到與之相關的結果條數為608000,這個數用科學記數法表示為(

A. 60.8×104B. 6.08×105C. 0.608×106D. 6.08×107

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數為(

A. 115° B. 120° C. 130° D. 140°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元

(1) 求甲、乙兩種商品每件的進價分別是多少元?

(2) 商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,(1)如果∠1=__________,那么DEAC;(同位角相等,兩直線平行);

(2)如果∠1=__________,那么EFBC;(內錯角相等,兩直線平行)

(3)如果DEF+__________=180°,那么DEAC;(同旁內角互補,兩直線平行);

(4)如果∠2+__________=180°,那么ABDF;(同旁內角互補,兩直線平行)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過點A(2,0)的兩條直線l1 , l2分別交y軸于點B,C,其中點B在原點上方,點C在原點下方,已知AB=
(1)求點B的坐標;
(2)若△ABC的面積為4,求直線l2的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小強在河的一邊,要測河面的一只船B與對岸碼頭A的距離,他的做法如下:

①在岸邊確定一點C,使C與A,B在同一直線上;

②在AC的垂直方向畫線段CD,取其中點O;

③畫DFCD使F、O、A在同一直線上;

④在線段DF上找一點E,使E與O、B共線.

他說測出線段EF的長就是船B與碼頭A的距離.他這樣做有道理嗎?為什么?

查看答案和解析>>

同步練習冊答案