【題目】如圖,二次函數(shù)(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②>4a,③0<b<1,④當x>﹣1時,y>0,其中正確結論的個數(shù)是( )
A.4個B.3個C.2個D.1個
【答案】B
【解析】
由拋物線的對稱軸在y軸右側,可以判定a、b異號,由此確定①正確;
由拋物線與x軸有兩個交點得到b2﹣4ac>0,以及由(0.1)可得:c=1,由此判定②正確;
由拋物線過點(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定③正確;
由圖象可知,當x<﹣1時,函數(shù)值y<0,由此判定④錯誤.
解:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(0,1)和(﹣1,0),
∴c=1,a﹣b+c=0.
①∵拋物線的對稱軸在y軸右側,
∴x=﹣>0,
∴a與b異號,
∴ab<0,正確;
②∵拋物線與x軸有兩個不同的交點,
∴b2﹣4ac>0,
∴b2>4ac,
由(0.1)可得:c=1
∴b2>4a,正確;
③∵拋物線開口向下,
∴a<0,
∵ab<0,∴b>0.
∵a﹣b+c=0,c=1,
∴a=b﹣1,
∵a<0,
∴b﹣1<0,b<1,
∴0<b<1,正確;
④由圖可知,當x<﹣1時,y<0,錯誤;
綜上所述,正確的結論有①②③.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l:與直線,直線分別交于點A,B,直線與直線交于點.
(1)求直線與軸的交點坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為.
①當時,結合函數(shù)圖象,求區(qū)域內的整點個數(shù);
②若區(qū)域內沒有整點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形OABC的直角頂點是坐標原點,邊OA,OC分別在x軸,y軸的正半軸上.OA∥BC,D是BC上一點,BD=OA=,AB=3,∠OAB=45°,E,F分別是線段OA,AB上的兩個動點,且始終保持∠DEF=45°.設OE=x,AF=y,則y與x的函數(shù)關系式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形為平行四邊形,為的中點,連接并延長交 的延長線于點.
(1)求證:△≌△;
(2)過點作于點,為的中點.判斷與的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了解全校1600名學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.將調查得到的結果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).
(1)問:在這次調查中,一共抽取了多少名學生?
(2)補全頻數(shù)分布直方圖;
(3)估計全校所有學生中有多少人乘坐公交車上學.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校初中各年級學生每天的平均睡眠時間(單位:h,精確到1h),抽樣調查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)a的值為 ,所抽查的學生人數(shù)為 .
(2)求出平均睡眠時間為8小時的人數(shù),并補全頻數(shù)直方圖.
(3)求出這部分學生的平均睡眠時間的眾數(shù)和平均數(shù).
(4)如果該校共有學生1200名,請你估計睡眠不足(少于8小時)的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線y=與直線y=x交于A、B兩點,點P(a,b)在雙曲線y=上,且0<a<4.
(1)設PB交x軸于點E,若a=1,求點E的坐標;
(2)連接PA、PB,得到△ABP,若4a=b,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種高檔蔬菜“莼菜”,其進價為16元/kg.經市場調查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(元/kg)的一次函數(shù),其售價、日銷售量對應值如表:
售價(元/) | 20 | 30 | 40 |
日銷售量() | 80 | 60 | 40 |
(1)求關于的函數(shù)解析式(不要求寫出自變量的取值范圍);
(2)為多少時,當天的銷售利潤 (元)最大?最大利潤為多少?
(3)由于產量日漸減少,該商品進價提高了元/,物價部門規(guī)定該商品售價不得超過36元/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關系.若日銷售最大利潤是864元,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com