【題目】如圖,拋物線 y=﹣x22x+3 的圖象與 x 軸交于 A、B 兩點(diǎn)(點(diǎn) A 在點(diǎn) B 的左邊),與 y軸交于點(diǎn) C,點(diǎn) D 為拋物線的頂點(diǎn).

1)求點(diǎn) A、B、C 的坐標(biāo);

2)點(diǎn) Mm,0)為線段 AB 上一點(diǎn)(點(diǎn) M 不與點(diǎn) AB 重合),過點(diǎn) M x 軸的垂線,與直線 AC 交于點(diǎn) E,與拋物線交于點(diǎn) P,過點(diǎn) P PQAB 交拋物線于點(diǎn) Q,過點(diǎn) Q QNx 軸于點(diǎn) N,可得矩形 PQNM.如圖,點(diǎn) P 在點(diǎn) Q 左邊,試用含 m 的式子表示矩形 PQNM 的周長(zhǎng);

3)當(dāng)矩形 PQNM 的周長(zhǎng)最大時(shí),m 的值是多少?并求出此時(shí)的△AEM 的面積;

4)在(3)的條件下,當(dāng)矩形 PMNQ 的周長(zhǎng)最大時(shí),連接 DQ,過拋物線上一點(diǎn) F y 軸的平行線,與直線 AC 交于點(diǎn) G(點(diǎn) G 在點(diǎn) F 的上方).若 FG2DQ,求點(diǎn) F 的坐標(biāo).

【答案】(1)A(﹣3,0),B(1,0);(2)矩形 PMNQ 的周長(zhǎng)=﹣2m28m+2;(3)矩形的周長(zhǎng)最大時(shí),m=﹣2;△AEM的面積為 ;(4F(﹣4,﹣5)或(10).

【解析】

(1)利用函數(shù)圖象與坐標(biāo)軸的交點(diǎn)的求法,求出點(diǎn)A,B,C的坐標(biāo);

(2)先確定出拋物線對(duì)稱軸,用m表示出PM,MN即可;

(3)由(2)得到的結(jié)論判斷出矩形周長(zhǎng)最大時(shí),確定出m,進(jìn)而求出直線AC的解析式即可;

(4)在(3)的基礎(chǔ)上,判斷出N應(yīng)與原點(diǎn)重合,Q點(diǎn)與C點(diǎn)重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.

(1)由拋物線 y=﹣x2﹣2x+3 可知,C(0,3).令 y=0,則 0=﹣x2﹣2x+3,

解得,x=﹣3 xl,

A(﹣3,0),B(1,0).

(2)由拋物線 y=﹣x2﹣2x+3 可知,對(duì)稱軸為 x=﹣1.

Mm,0),

PM=﹣m22m+3,MN=(﹣m1)×2=﹣2m2

矩形 PMNQ 的周長(zhǎng)=2PM+MN)=(﹣m22m+32m2)×2=﹣2m28m+2

(3)﹣2m2﹣8m+2=﹣2(m+2)2+10,

矩形的周長(zhǎng)最大時(shí),m=﹣2.

A(﹣3,0),C(0,3), 設(shè)直線 AC 的解析式 ykx+b,

解得 kl,b3

解析式 yx+3, 令 x=﹣2,則 y=1,

E(﹣2,1),

EM1,AM1,

SAM×EM,

即△AEM的面積為.

(4)M(﹣2,0),拋物線的對(duì)稱軸為 x=﹣l,

N 應(yīng)與原點(diǎn)重合,Q 點(diǎn)與 C 點(diǎn)重合,

DQDC

x=﹣1 代入 y=﹣x2﹣2x+3,解得 y=4,

D(﹣1,4),

DQDC

FGDQ,

FG4

設(shè) Fn,﹣n22n+3),則 Gn,n+3),

點(diǎn) G 在點(diǎn) F 的上方且 FG4

n+3)﹣(﹣n2﹣2n+3)=4. 解得 n=﹣4 或 n=1,

F(﹣4,﹣5)或(1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請(qǐng)用畫樹狀圖的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a、b、c為常數(shù)且a≠0)中的xy的部分對(duì)應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當(dāng)時(shí),y0;

3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 ___________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表中記錄了一次試驗(yàn)中時(shí)間與溫度的數(shù)據(jù)(假設(shè)溫度的變化是均勻的)

時(shí)間(min)

0

5

10

15

20

25

溫度()

10

25

40

55

70

85

(1)用文字概述溫度與時(shí)間之間的關(guān)系:______;

(2)21min的溫度是多少?請(qǐng)列算式計(jì)算;

(3)什么時(shí)間的溫度是34℃?請(qǐng)用方程求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為A02),B2,0),直線AB與反比例函數(shù)y=的圖象交于點(diǎn)C和點(diǎn)D(﹣1,a).

1)求直線AB和反比例函數(shù)的解析式;

2)求∠ACO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDBDC都是直角三角形,且∠ABD=BDC=90°,∠BAD=30°,∠DBC=45°,則tanDAC的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元。

(1)求購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需從體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

同步練習(xí)冊(cè)答案