如圖,扇形AOB的圓心角為直角,正方形OCDE內(nèi)接于扇形,點C,E,D分別在OA,OB,弧AB上,過點A作AF⊥ED,交ED的延長線于F,垂足為F,如果正方形的邊長為1,那么陰影部分的面積為   
【答案】分析:通過觀察圖形可知DE=DC,BE=AC,弧BD=弧AD,陰影部分的面積正好等于長方形ACDF的面積,根據(jù)正方形的性質(zhì)求出扇形的半徑,從而求出AC的長,即可求出長方形ACDF的面積.
解答:解:連接OD,
∵正方形的邊長為1,即OC=CD=1,
∴OD==
∴AC=OA-OC=-1,
∵DE=DC,BE=AC,弧BD=弧AD
∴S=長方形ACDF的面積=AC•CD=-1.
點評:本題要把不規(guī)則的圖形通過幾何變換轉(zhuǎn)化為規(guī)則圖形的面積求解.如通過觀察可知陰影部分的面積正好等于長方形ACDF的面積,直接根據(jù)相關(guān)條件求長方形ACDF的面積即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線CP交OA的延長線于點P,且∠CPO=∠CDE.
(1)試說明:DM=
2
3
r;
(2)試說明:直線CP是扇形OAB所在圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•珠海三模)如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側(cè)面,求圓錐底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•臺灣)已知:如圖,扇形AOB.求作:一個與OA、OB、
AB
皆相切的圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是數(shù)學(xué)公式上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線CP交OA的延長線于點P,且∠CPO=∠CDE.
(1)試說明:DM=數(shù)學(xué)公式r;
(2)試說明:直線CP是扇形OAB所在圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省中考數(shù)學(xué)押題試卷(6月份)(解析版) 題型:解答題

如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側(cè)面,求圓錐底面圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案