【題目】如圖,由6個長為2,寬為1的小矩形組成的大矩形網(wǎng)格,小矩形的頂點(diǎn)稱為這個矩形網(wǎng)格的格點(diǎn),由格點(diǎn)構(gòu)成的幾何圖形稱為格點(diǎn)圖形(如:連接2個格點(diǎn),得到一條格點(diǎn)線段;連接3個格點(diǎn),得到一個格點(diǎn)三角形;…),請按要求作圖(標(biāo)出所畫圖形的頂點(diǎn)字母).
(1)畫出4種不同于示例的平行格點(diǎn)線段;
(2)畫出4種不同的成軸對稱的格點(diǎn)三角形,并標(biāo)出其對稱軸所在線段;
(3)畫出1個格點(diǎn)正方形,并簡要證明.
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
(1)根據(jù)平行線的判定即可畫出圖形(答案不唯一);
(2)根據(jù)軸對稱的性質(zhì)即可畫出圖形(答案不唯一);
(3)根據(jù)正方形的判定方法即可畫出圖形(答案不唯一),再根據(jù)矩形的性質(zhì)以及三角形全等的判定與性質(zhì)進(jìn)行證明.
解:(1)答案不唯一,如圖AB∥CD:
(2)答案不唯一,如圖△ABC為所求三角形,虛線為對稱軸:
(3)答案不唯一,如圖四邊形ABCD為正方形:
證明:
∵圖中所有長方形都全等,
∴AF=BE,∠F=∠BEC=90°,BF=CE,
∴△AFB≌△BEC(SAS),
∴AB=BC,∠1=∠3.
同理,易得AB=AD=DC,
∴四邊形ABCD為菱形.
∵∠1=∠3,
∴∠1+∠2=90°,
∴∠ABC=90°,
∴四邊形ABCD為正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線,分別是邊的中點(diǎn),連接,,則下列結(jié)論錯誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn) ,與直線相交于點(diǎn) ,
(1)求直線 的函數(shù)表達(dá)式;
(2)求 的面積;
(3)在 軸上是否存在一點(diǎn) ,使是等腰三角形.若不存在,請說明理由;若存在,請直接寫出點(diǎn) 的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,有菱形,點(diǎn)的坐標(biāo)是,雙曲線經(jīng)過點(diǎn),且,則的值為( )
A. 40 B. 48 C. 64 D. 80
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)沿邊從點(diǎn)向點(diǎn)以的速度移動;同時,點(diǎn)從點(diǎn)沿邊向點(diǎn)以的速度移動,設(shè)點(diǎn)、移動的時間為.問:
當(dāng)為何值時的面積等于?
當(dāng)為何值時是直角三角形?
是否存在的值,使的面積最小,若存在,求此時的值及此時的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4 cm,面積為12 cm2,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F,若D為BC邊上的中點(diǎn),M為線段EF上一點(diǎn),則△BDM的周長最小值為( )
A. 5 cm B. 6 cm C. 8 cm D. 10 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小董設(shè)計的“作已知圓的內(nèi)接正三角形”的尺規(guī)作圖過程.
已知:⊙O.
求作:⊙O的內(nèi)接正三角形.
作法:如圖,
①作直徑AB;
②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點(diǎn);
③連接AC,AD,CD.
所以△ACD就是所求的三角形.
根據(jù)小董設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:在⊙O中,連接OC,OD,BC,BD,
∵OC=OB=BC,
∴△OBC為等邊三角形(_______________)(填推理的依據(jù)).
∴∠BOC=60°.
∴∠AOC=180°-∠BOC=120°.
同理∠AOD=120°,
∴∠COD=∠AOC=∠AOD=120°.
∴AC=CD=AD(_______________)(填推理的依據(jù)).
∴△ACD是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,四邊形中,,點(diǎn)為邊的中點(diǎn),連接并延長交的延長線于點(diǎn),求證:.(表示面積)
(2)如圖2,在中,過邊的中點(diǎn)任意作直線,交邊于點(diǎn),交的延長線于點(diǎn),試比較與的面積,并說明理由.
(3)如圖3,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖像過點(diǎn)且分別于軸正半軸,軸正半軸交于點(diǎn)、,請問的面積是否存在最小值?若存在,求出此時一次函數(shù)關(guān)系式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com