【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.
(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
【答案】(1)根據(jù)平行四邊形的性質(zhì)可得∠A=∠C,再結(jié)合∠EDB=∠C、公共角∠E即可證得結(jié)論;
(2)
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)可得∠A=∠C,再結(jié)合∠EDB=∠C、公共角∠E即可證得結(jié)論;
(2)根據(jù)平行四邊形的性質(zhì)可得DC=AB,由(1)得△ADE∽△DBE,根據(jù)相似三角形的性質(zhì)可求得BE的長,從而可以求得AB的長,即可得到結(jié)果.
(1)平行四邊形ABCD中,∠A=∠C,
∵∠EDB=∠C,
∴∠A=∠EDB,
又∠E=∠E,
∴△ADE∽△DBE;
(2)平行四邊形ABCD中,DC=AB,
由(1)得△ADE∽△DBE,
∴
∴
∴
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地上年度電價為0.8元/度,年用電量為1億度,本年度計劃將電價調(diào)至0.55~0.75元/度之間,經(jīng)測算,若電價調(diào)至x元/度,則本年度新增用電量y(億度)與(x-0.4)成反比例.又知當(dāng)x=0.65時,y=0.8.
(1)求y與x之間的函數(shù)解析式;
(2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量×(實際電價-成本價)]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.
(1)寫出m與n之間的關(guān)系式;
(2)當(dāng)⊙P與兩坐標(biāo)軸都相切時,求出⊙P的半徑;
(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m+n=7,點A(m,n)在一個反比例函數(shù)的圖象上,點A與坐標(biāo)原點的距離為5,現(xiàn)將這個反比例函數(shù)圖象繞原點順時針旋轉(zhuǎn)90o,得到一個新的反比例函數(shù)圖象,則這個新的反比例函數(shù)的解析式是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題提出)
“不以規(guī)矩,不能成方圓.”——孟子;“圓,一中同長也.”——墨經(jīng).
(1)圓,一中同長也.”體現(xiàn)了古代先哲對“圓”定義的思考,請用現(xiàn)代文翻譯:____.
(初步思考)
圓規(guī)是我們初中幾何學(xué)習(xí)不可或缺的工具,用圓規(guī)不僅可以畫圓、畫弧,還可以畫弧與弧的交點,利用這一特征可以構(gòu)造很多圖形,如:
(2)角平分線:如圖1,只用圓規(guī)在∠AOB中畫出一點P使得點P在∠AOB的角平分線上;對稱點:如圖2,只用圓規(guī)畫出點P關(guān)于直線l的對稱點Q,并說明理由.
(操作與應(yīng)用)
(3)已知點A、直線l.在圖3中只用圓規(guī)在直線l上畫出兩點B、C,使得A、B、C恰好是等腰三角形的3個頂點,(畫出一個并寫出相等線段即可):
已知點P、直線l.在圖4中只用圓規(guī)畫出一點Q,使得點P、Q所在的直線與直線l平行.(提示:平行四邊形對邊平行).
(4)已知點O、A、B,只用圓規(guī)畫出半徑為AB的⊙O與點A、B所在直線的交點C、D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com