科目: 來源: 題型:
【題目】(探究活動)
(1)問題發(fā)現(xiàn):如圖①,直線AB∥CD,E是AB與AD之間的一點,連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
請把下面的證明過程補充完整:
證明:過點E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC( )
∴∠C=∠CEF.( )
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等量代換)
即∠B+∠C=∠BEC.
(2)拓展探究:如果點E運動到圖②所示的位置,其他條件不變,試探究∠B、∠C、∠BEC的數(shù)量關系并證明;
(3)解決問題:如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(直接寫出結論,不用寫計算過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,BF平分∠ABC,交CD于點E,交AC于點F.若AB=10,BC=6,則CE的長為( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.
(2)已知:,其中是整數(shù),且,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4 米.
(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù): .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC在直角坐標系中.
(1)寫出點A,點B的坐標A( , ),B( , );
(2)S△ABC= ;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1的位置,并寫出點A1、B1、C1的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知四邊形ABCD的頂點為A(1,2),B(-1,2),C(-1,-2),D(1,-2),點M和點N同時從E(0,2)點出發(fā),沿四邊形的邊做環(huán)繞勻速運動,M點以1單位/s的速度做逆時針運動,N點以2單位/s的速度做順時針運動,則點M和點N第2017次相遇時的坐標為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,則下列結論:
① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正確結論的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目: 來源: 題型:
【題目】為增強學生的身體素質,教育行政部門規(guī)定學生每天參加戶外活動的平均時間不少于1小時.為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調查,并將調查結果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調查中共調查了多少名學生?
(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;
(3)求表示戶外活動時間1小時的扇形圓心角的度數(shù);
(4)本次調查中學生參加戶外活動的平均時間是否符合要求?戶外活動時間的眾數(shù)和中位數(shù)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com