科目: 來源: 題型:
【題目】已知AD∥BC,AB∥CD,E為射線BC上一點,AE平分∠BAD.
(1)如圖1,當(dāng)點E在線段BC上時,求證:∠BAE=∠BEA.
(2)如圖2,當(dāng)點E在線段BC延長線上時,連接DE,若∠ADE=3∠CDE,∠AED=60°.
①求證∠ABC=∠ADC;
②求∠CED的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如 圖,在邊長為3 cm的正方形ABCD中,點E為BC邊上的任意一點,AF⊥AE,AF交CD的延長線于F,則四邊形AFCE的面積為_____cm2.
查看答案和解析>>
科目: 來源: 題型:
【題目】2013年是一個讓人記憶猶新的年份,霧霾天氣持續(xù)籠罩我國大部分地區(qū),口罩市場出現(xiàn)熱銷,某旗艦網(wǎng)店用8000元購進甲、乙兩種型號的口罩,銷售完后共獲利2800元,進價和售價如下表:
品名 價格 | 甲型口罩 | 乙型口罩 |
進價(元/袋) | 20 | 25 |
售價(元/袋) | 26 | 35 |
(1)求該網(wǎng)店購進甲、乙兩種型號口罩各多少袋?
(2)該網(wǎng)店第二次以原價購進甲、乙兩種型號口罩,購進乙種型號口罩袋數(shù)不變,而購進甲種型號口罩袋數(shù)是第一次的2倍.甲種口罩按原售價出售,而乙種口罩讓利銷售.若兩種型號的口罩都售完,要使第二次銷售活動獲利不少于3680元,乙種型號的口罩最低售價為每袋多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= . 例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .
(Ⅰ)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).
求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(Ⅱ)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”;
(Ⅲ)在(2)所得“吉祥數(shù)”中,求F(t)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時針旋轉(zhuǎn)一定角度后與△ADE重合,且點C恰好成為AD的中點.
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,則四邊形AEDF的周長是( )
A. 24 B. 28 C. 32 D. 36
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方形ABCD,點F是射線DC上一動點(不與C,D重合).連接AF并延長交直線BC于點E,交BD于H,連接CH,過點C作CG⊥HC交AE于點G.
(1)若點F在邊CD上,如圖1.
①證明:∠DAH=∠DCH;
②猜想:△GFC的形狀并說明理由.
(2)取DF中點M,連接MG.若MG=2.5,正方形邊長為4,求BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,點D是邊AB的中點,點E在邊BC上,AE=BE,點M是AE的中點,聯(lián)結(jié)CM,點G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當(dāng)點G和點M重合時,求證:四邊形DMEN是菱形;
(2)如圖1,當(dāng)點G和點M、C不重合時,求證:DG=DN.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次項系數(shù)2=1×2;
(ii)常數(shù)項﹣3=﹣1×3=1×(﹣3),驗算:“交叉相乘之和”;
1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)發(fā)現(xiàn)第③個“交叉相乘之和”的結(jié)果1×(﹣3)+2×1=﹣1,等于一次項系數(shù)﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,則2x2﹣x﹣3=(x+1)(2x﹣3).
像這樣,通過十字交叉線幫助,把二次三項式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com