科目: 來源: 題型:
【題目】如圖,在直角梯形中, ∥,∠=90°,=28cm, =24cm, =4cm,點(diǎn)從點(diǎn)出發(fā),以1cm/s的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)同時(shí)出發(fā),以2cm/s的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng)。則四邊的面積(cm2)與兩動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間(s)的函數(shù)圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,頂點(diǎn)為(1,4)的拋物線與直線交于點(diǎn)A(2,2),直線與軸交于點(diǎn)B與軸交于點(diǎn)C
(1)求的值及拋物線的解析式
(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對(duì)稱軸點(diǎn)在軸上,求點(diǎn)P的坐標(biāo)
(3)點(diǎn)D為軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A 、B、E、D為頂點(diǎn)的四邊為平行四邊形時(shí),直接寫出點(diǎn)E的坐標(biāo)。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,P是矩形ABCD的對(duì)角線AC的中點(diǎn),E是AD的中點(diǎn).若AB=6,AD=8,則四邊形ABPE的周長(zhǎng)為( )
A. 14 B. 16 C. 17 D. 18
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD為AB邊上的高,若點(diǎn)A關(guān)于CD所在直線的對(duì)稱點(diǎn)E恰好為AB的中點(diǎn),則∠B的度數(shù)是( )
A. 60°B. 45°C. 30°D. 75°
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)等式和不等式的性質(zhì),可以得到:若a-b>0,則a>b;若a-b=0,則a=b;若a-b<0,則a<b.這是利用“作差法”比較兩個(gè)數(shù)或兩個(gè)代數(shù)式值的大小.
(1)試比較代數(shù)式5m2-4m+2與4m2-4m-7的值之間的大小關(guān)系;
(2)已知A=5m2﹣4(),B=7(m2﹣m)+3,請(qǐng)你運(yùn)用前面介紹的方法比較代數(shù)式A與B的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)E,連接OE、AE,過點(diǎn)E作⊙O的切線交邊BC于F.
(1)求證:△ODE∽△ECF;
(2)在點(diǎn)O的運(yùn)動(dòng)過程中,設(shè)DE= :
①求的最大值,并求此時(shí)⊙O的半徑長(zhǎng);
②判斷△CEF的周長(zhǎng)是否為定值,若是,求出△CEF的周長(zhǎng);否則,請(qǐng)說明理由?
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)自行車100輛,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負(fù)數(shù)):
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,∠EAB=60°,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
求證:EG =AG+BG.
小明同學(xué)的思路是:作∠GAH=∠EAB交GE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請(qǐng)?zhí)骄烤段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F是線段CD上的動(dòng)點(diǎn).
(1)如圖1,若CF=CD,求證:ΔAEF是直角三角形;
(2)如圖2,若點(diǎn)F與點(diǎn)D重合,點(diǎn)G在ED上,且AG=AD,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com