科目: 來源: 題型:
【題目】如圖,在等腰△ABC中,,,F是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持,連接DE、DF、EF在此運動變化的過程中,下列結(jié)論:(1)是等腰直角三角形;四邊形CDFE不可能為正方形,(3)長度的最小值為4;(4)連接CF,CF恰好把四邊形CDFE的面積分成1:2兩部分,則或其中正確的結(jié)論個數(shù)是
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標系中的位置如圖.
(1)分別寫出下列各點的坐標:A′ ; B′ ;C′ ;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到? .
(3)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應點P′的坐標為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,0),點 B是 y軸正半軸上一動點,點C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點F,直接寫出CF的長_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長,交 y軸于點 P,當點 C運動到什么位置時,滿足 PD=DC?請求出點C的坐標;
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點B在 y軸上運動時,求OP的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在口ABCD中,分別以邊BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,連接AF,AE.
(1)求證:△ABF≌△EDA;
(2)延長AB與CF相交于G,若AF⊥AE,求證BF⊥BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)過點A(3,4),直線AC與x軸交于點C(6,0),過點C作x軸的垂線BC交反比例函數(shù)圖象于點B.
(1)求k的值與B點的坐標;
(2)在平面內(nèi)有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有D點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.
(1)求證:∠CBP=∠ADB.
(2)若OA=2,AB=1,求線段BP的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應用,截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關知識來解決數(shù)學問題.
(1)如圖1,在△ABC中,若 AB=12,AC=8,求 BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使 DE=AD,再連接 BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關系即可判斷中線 AD的取值范圍是_______.
問題解決:
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分別是邊BC,CD上的兩點,且∠EAF=∠BAD,求證:BE+DF=EF.
問題拓展:
(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=60°,點D是△ABC 外角平分線上一點,DE⊥AC交 CA延長線于點E,F(xiàn)是 AC上一點,且DF=DB.
求證:AC﹣AE=AF.
查看答案和解析>>
科目: 來源: 題型:
【題目】央視“經(jīng)典詠流傳”開播以來受到社會廣泛關注.我市某校就“中華文化我傳承——地方戲曲進校園”的喜愛情況進行了隨機調(diào)查,對收集的信息進行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數(shù)為_______.
(2)補全條形統(tǒng)計圖;
(3)若該校共有學生1800人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中A類有__________人;
(4)在抽取的A類5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學擔任兩角色,用樹形圖或列表法求出被抽到的兩個學生性別相同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠BAD=α,∠BCD=180°-α,BD 平分∠ABC.
(1)如圖,若α=90°,根據(jù)教材中一個重要性質(zhì)直接可得 DA=CD,這個性質(zhì)是 ;
(2)問題解決:如圖,求證:AD=CD;
(3)問題拓展:如圖,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC,求證:BD+AD=BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,點 D,E分別在AB,BC上,且AD=BE,BD=AC,過E作EF⊥AB于F.
(1)求證:∠FED=∠CED;
(2)若 BF=,直接寫出 CE的長為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com