相關(guān)習題
 0  356268  356276  356282  356286  356292  356294  356298  356304  356306  356312  356318  356322  356324  356328  356334  356336  356342  356346  356348  356352  356354  356358  356360  356362  356363  356364  356366  356367  356368  356370  356372  356376  356378  356382  356384  356388  356394  356396  356402  356406  356408  356412  356418  356424  356426  356432  356436  356438  356444  356448  356454  356462  366461 

科目: 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于EBECD于點F,∠1+2=90°

1)試說明:ABCD;

2)若∠2=25°,求∠3的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】四邊形ABCD中,ADBC,要判別四邊形ABCD是平行四邊形,還需滿足條件(

A. A+C=180°B. B+D=180°

C. A+B=180°D. A+D=180°

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,BDGE,AQ 平分∠FAC,交 BD Q,GFA=50°,Q=25°,則∠ACB 度數(shù)( )

A. 90° B. 95° C. 100° D. 105°

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,△ABC與△CDE都是等邊三角形,B,C,D在一條直線上,連結(jié)B,E兩點交AC于點M,連結(jié)A,D兩點交CEN點.

1ADBE有什么數(shù)量關(guān)系,并證明你的結(jié)論.

2)求證:△MNC是等邊三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B.

(1)直接寫出拋物線L的解析式;

(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N.若BMN的面積等于1,求k的值;

(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1y軸交于點C,過點Cy軸的垂線交拋物線L1于另一點D.F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若PCDPOF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】8分)如圖,△A1B1C1△ABC向右平移四個單位長度后得到的,且三個頂點的坐標分別為A11,1),B142),C134).

1)請畫出△ABC,并寫出點A、B、C的坐標;

2)求出△AOA1的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】ABC中,∠ABC=90°.

(1)如圖1,分別過A、C兩點作經(jīng)過點B的直線的垂線,垂足分別為M、N,求證:ABM∽△BCN;

(2)如圖2,P是邊BC上一點,∠BAP=C,tanPAC=,求tanC的值;

(3)如圖3,D是邊CA延長線上一點,AE=AB,DEB=90°,sinBAC=,,直接寫出tanCEB的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】1)解方程:4x+12-169=0;

2)一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程(π3)是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點A(a,m)在雙曲線y=上且m<0,過點Ax軸的垂線,垂足為B.

(1)如圖1,當a=﹣2時,P(t,0)是x軸上的動點,將點B繞點P順時針旋轉(zhuǎn)90°至點C,

①若t=1,直接寫出點C的坐標;

②若雙曲線y=經(jīng)過點C,求t的值.

(2)如圖2,將圖1中的雙曲線y=(x>0)沿y軸折疊得到雙曲線y=﹣(x<0),將線段OA繞點O旋轉(zhuǎn),點A剛好落在雙曲線y=﹣(x<0)上的點D(d,n)處,求mn的數(shù)量關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

【題目】8字”的性質(zhì)及應用:

1)如圖,AD、BC相交于點O,得到一個“8字”ABCD,求證:∠A+B=∠C+D

2)圖中共有多少個“8字”?

3)如圖,∠ABC和∠ADC的平分線相交于點E,利用(1)中的結(jié)論證明∠E(∠A+C).

查看答案和解析>>

同步練習冊答案